Question.[Peng.Sec4.16]. 利用正交标架法证明习题三第 27 题:设曲面 S:r=r(u,v)S:\pmb r=\pmb r(u,v) 上没有抛物点,n\pmb nSS 的法向量;曲面 S~:r~=r~(u,v)=r(u,v)+λn(u,v)\tilde S:\tilde {\pmb r}=\tilde{\pmb r}(u,v)=\pmb r(u,v)+\lambda \pmb n(u,v),其中常数 λ\lambda 充分小,称为 SS 的平行曲面。
(1) 证明:SSS~\tilde S 在对应点的切平面平行;
(2) 可以选取 S~\tilde S 的单位法向量 n~\tilde{\pmb n},使得 S~\tilde S 的 Gauss 曲率和平均曲率分别为:

K~=K12λH+λ2K,H~=HλK12λH+λ2K.\tilde K=\dfrac {K }{1-2\lambda H+\lambda^2 K },\quad \tilde H=\dfrac {H-\lambda K }{1-2\lambda H+\lambda^2 K }.

(1) 取微分

dr~=dr+λdn=rudu+rvdv+λ(nudu+nvdv)\mathrm d\tilde{\pmb r}=\mathrm d\pmb r+\lambda \mathrm d\pmb n=\pmb r_u\mathrm du+\pmb r_v\mathrm dv+\lambda (\pmb n_u\mathrm du+\pmb n_v\mathrm dv)

这说明 dr~\mathrm d\tilde {\pmb r} 落在 dr\mathrm d\pmb r 张成的平面上,所以切平面平行。

(2) 由于

dei=ωijej=ω~ije~j\mathrm d\pmb e_i=\omega_{ij}\pmb e_j=\tilde {\omega}_{ij}\tilde {\pmb e}_j

由此可知

ω~13=ω13=k1ω1,ω~23=ω23=k2ω2\tilde \omega_{13}=\omega_{13}=k_1\omega_1,\quad \tilde \omega_{23}=\omega_{23}=k_2\omega_2

直接计算

dr~=dr+λdn=(ω1λk1)e1+(ω2λk2)e2=ω~1e~1+ω~2e~2\mathrm d\tilde {\pmb r}=\mathrm d{\pmb r}+\lambda \mathrm d\pmb n=(\omega_1-\lambda k_1)\pmb e_1+(\omega_2-\lambda k_2)\pmb e_2=\tilde \omega_1\tilde {\pmb e}_1+\tilde \omega_2\tilde {\pmb e}_2

因此比较系数

k~iω~i=k~i(1λki)ωi=kiωi\tilde k_i\tilde \omega_i=\tilde k_i(1-\lambda k_i)\omega_i=k_i\omega_i

K~=k~1k~2=K12λH+λ2K,H~=k~1+k~22=HλK12λH+λ2K\tilde K=\tilde k_1\tilde k_2=\dfrac {K }{1-2\lambda H+\lambda^2 K },\quad \tilde H=\dfrac {\tilde k_1+\tilde k_2}2=\dfrac {H-\lambda K }{1-2\lambda H+\lambda^2 K }


Question.[Peng.Sec4.18]. 设曲面 SS 的参数表示为 r=r(u,v)\pmb r=\pmb r(u,v)e1=ru,e2=rv\pmb e_1=\pmb r_u,\pmb e_2=\pmb r_vSS 的正交标架,求 SS 的 Gauss 曲率。

由题 (u,v)(u,v) 是曲面 SS 上的正交参数,此时

I=Edu2+Gdv2I=E\mathrm du^2+G\mathrm dv^2

取单位化后的正交标架

e~1=ruE,e~2=rvG,e~3=e~1e~2\tilde {\pmb e}_1=\dfrac {\pmb r_u}{\sqrt E},\tilde {\pmb e}_2=\dfrac {\pmb r_v}{\sqrt G}, \tilde {\pmb e}_3=\tilde {\pmb e}_1\wedge \tilde {\pmb e}_2

ω1=Edu,ω2=Gdv\omega_1=\sqrt E\mathrm du,\quad \omega_2=\sqrt G\mathrm dv

ω12=ω21=(E)vGdu+(G)uEdv\omega_{12}=-\omega_{21}=-\dfrac {(\sqrt E)_v}{\sqrt G}\mathrm du+\dfrac {(\sqrt G)_u}{\sqrt E}\mathrm dv

ω13=de~1,e~3=LEdu+MEdv\omega_{13}=\langle \mathrm d\tilde {\pmb e}_1,\tilde {\pmb e}_3\rangle=\dfrac L{\sqrt E}\mathrm du+\dfrac M{\sqrt E}\mathrm dv

ω23=de~2,e~3=MGdu+NGdv\omega_{23}=\langle \mathrm d\tilde {\pmb e}_2,\tilde{\pmb e}_3\rangle=\dfrac M{\sqrt G}\mathrm du+\dfrac N{\sqrt G}\mathrm dv

特别地,可以得到正交参数下的 Gauss 方程,由

dω12=ω13ω32=Kω1ω2\mathrm d\omega_{12}=\omega_{13}\wedge \omega_{32}=-K\omega_1\wedge \omega_2

可得

LNM2EG=K=1EG{((G)uE)u+((E)vG)v}\dfrac {LN-M^2}{EG}=K=-\dfrac {1}{\sqrt{EG}}\left\{\left(\dfrac {(\sqrt G)_u}{\sqrt E}\right)_u +\left(\dfrac {(\sqrt E)_v}{\sqrt G}\right)_v\right\}

而题设指出 ru,rv\pmb r_u,\pmb r_v 是单位的,所以

K=0K=0


Question.[Peng.Sec4.19].(u,v)(u,v) 是曲面 SS 的正交参数

e1=ruE,e2=rvG\pmb e_1=\dfrac {\pmb r_u }{\sqrt E },\quad \pmb e_2=\dfrac { \pmb r_v }{ \sqrt G }

证明:方程组

{dω13=ω12ω23dω23=ω21ω13\begin{cases}\mathrm d\omega_{13}=\omega_{12}\wedge \omega_{23}\\\mathrm d\omega_{23}=\omega_{21}\wedge \omega_{13}\end{cases}

与 Codazzi 方程(正交参数版本)等价:

{(LE)v(ME)uN(E)vGM(G)uEG=0(NG)u(MG)vL(G)uEM(E)vEG=0\begin{cases}\left(\dfrac {L}{\sqrt E}\right)_v-\left(\dfrac {M}{\sqrt E}\right)_u-N\dfrac {(\sqrt E)_v}G-M\dfrac {(\sqrt G)_u}{\sqrt {EG}}=0\\ \\ \left(\dfrac {N}{\sqrt G}\right)_u-\left(\dfrac {M}{\sqrt G}\right)_v-L\dfrac {(\sqrt G)_u}E-M\dfrac {(\sqrt E)_v}{\sqrt {EG}}=0\end{cases}

同上计算。展开实际上是等价的。


Question.[Peng.Sec4.20].{e1,e2}\{\pmb e_1,\pmb e_2\} 是曲面的正交标架,e1,e2\pmb e_1,\pmb e_2 是曲面的主方向,k1,k2k_1,k_2 是相应的主曲率。证明:这时曲面的 Codazzi 方程等价于

dk1ω1=(k2k1)ω12ω2,dk2ω2=(k1k2)ω21ω1.\mathrm dk_1\wedge \omega_1=(k_2-k_1)\omega_{12}\wedge \omega_2,\quad dk_2\wedge \omega_2=(k_1-k_2)\omega_{21}\wedge \omega_1.

由于 e1,e2\pmb e_1,\pmb e_2 是主方向,所以

ω13=k1ω1,ω23=k2ω2\omega_{13}=k_1\omega_1,\quad \omega_{23}=k_2\omega_2

因此,正交标架的 Codazzi 方程等价于

{dk1ω1+k1dω1=dω13=ω12ω23=k2ω12ω2dk2ω2+k2dω2=dω23=ω21ω13=k1ω21ω1\begin{cases}\mathrm dk_1\wedge \omega_1+k_1 \mathrm d\omega_1=\mathrm d\omega_{13}=\omega_{12}\wedge \omega_{23}=k_2\omega_{12}\wedge \omega_2\\ \\ \mathrm dk_2\wedge \omega_2+k_2 \mathrm d\omega_2=\mathrm d\omega_{23}=\omega_{21}\wedge \omega_{13}=k_1\omega_{21}\wedge \omega_1\end{cases}


Question.[Peng.Sec5.1(3)]. 已知曲面的第一基本形式,求 Gauss 曲率:

I=dudu+dvdv(c+u2+v2)2I=\dfrac {\mathrm du\mathrm du+\mathrm dv\mathrm dv}{(c+u^2+v^2)^2}

由正交标架的 Gauss 方程,设 λ=1/(c+u2+v2)\lambda=1/(c+u^2+v^2),则

K=(λuuλλu2+λvvλλv2)=4cK=-(\lambda_{uu}\lambda -{\lambda_u^2}+\lambda_{vv}\lambda -{\lambda_v^2})=-4c


Question.[Peng.Sec5.2]. 设两个曲面 SSS~\widetilde S的第一基本形式满足 I=λI~I=\lambda \widetilde I,其中 λ>0\lambda >0 为常数,证明:

K=K~λK=\dfrac {\widetilde K }{\lambda }

I=λI~I=\lambda \widetilde I,则 gαβ=λg~αβg_{\alpha\beta}=\lambda \widetilde g_{\alpha\beta},所以 gαβ=1λg~αβg^{\alpha\beta}=\dfrac 1\lambda \widetilde g^{\alpha\beta}。故

Γαβγ=12gγδ(gδα,β+gδβ,αgαβ,δ)=Γ~αβγ\Gamma^\gamma_{\alpha\beta}=\dfrac 12 g^{\gamma\delta}(g_{\delta\alpha,\beta}+g_{\delta\beta,\alpha}-g_{\alpha\beta,\delta})=\widetilde \Gamma^\gamma_{\alpha\beta}

计算 Riemann 记号

Rδαβγ=gδϵ(Γαγ,βϵΓαβ,γϵ+ΓβμϵΓαγμΓγμϵΓαβμ)=λR~δαβγR_{\delta\alpha\beta\gamma}=g_{\delta\epsilon}(\Gamma^\epsilon_{\alpha\gamma,\beta}-\Gamma^\epsilon_{\alpha\beta,\gamma}+\Gamma^\epsilon_{\beta\mu}\Gamma^\mu_{\alpha\gamma}-\Gamma^\epsilon_{\gamma\mu}\Gamma^\mu_{\alpha\beta})=\lambda \widetilde R_{\delta\alpha\beta\gamma}

因此

K=R1212det(gαβ)=λR~1212λ2det(g~αβ)=K~λK=-\dfrac {R_{1212}}{\det(g_{\alpha\beta})}=-\dfrac {\lambda \widetilde R_{1212}}{\lambda^2 \det(\widetilde g_{\alpha\beta})}=\dfrac {\widetilde K}{\lambda }


Question.[Peng.Sec5.3]. 设曲面 S:r=r(u,v)=(au,bv,au2+bv22)S:\pmb r=\pmb r(u,v)=(au,bv,\dfrac {au^2+bv^2}{2})S~:r~=r~(u,v)=(a~u~,b~v~,a~u~2+b~v~22)\widetilde S:\widetilde{\pmb r}=\widetilde{\pmb r}(u,v)=(\widetilde a\widetilde u,\widetilde b\widetilde v,\dfrac {\widetilde a\widetilde u^2+\widetilde b\widetilde v^2}{2})
(1) 证明:当 ab=a~b~ab=\widetilde a\widetilde b时,在对应 (u,v)=(u~,v~)(u,v)=(\widetilde u,\widetilde v) 下,SSS~\widetilde S的 Gauss 曲率相等;
(2) (a,b)(a,b)(a~,b~)(\widetilde a,\widetilde b) 满足什么关系时,SSS~\widetilde S有等距变换?

(1) 计算

ru=(a,0,au),rv=(0,b,bv)\pmb r_u=(a,0,au),\quad \pmb r_v=(0,b,bv)

E=a2(1+u2),F=abuv,G=b2(1+v2)E=a^2(1+u^2),\quad F=ab uv,\quad G=b^2(1+v^2)

n=rurvrurv=(aub,bva,ab)a2b2(1+u2+v2)\pmb n=\dfrac {\pmb r_u\wedge \pmb r_v}{|\pmb r_u\wedge \pmb r_v|}=\dfrac {(-au b,-bv a,ab)}{\sqrt{a^2b^2(1+u^2+v^2)}}

L=ruu,n=a2ba2b2(1+u2+v2),M=0,N=ab2a2b2(1+u2+v2)L=\langle \pmb r_{uu},\pmb n\rangle=\dfrac {a^2 b}{\sqrt{a^2 b^2(1+u^2+v^2)}},\quad M=0,\quad N=\dfrac {a b^2}{\sqrt{a^2 b^2(1+u^2+v^2)}}

K=LNM2EGF2=1(1+u2+v2)abK=\dfrac {LN-M^2}{EG-F^2}=\dfrac {1}{(1+u^2+v^2) a b}

同理计算 K~\tilde K 的形式是一样的。

(2) 认为对应 (u,v)(u~,v~)(u,v)\to (\widetilde u,\widetilde v) 下是等距变换,则由 (1) 可知 Gauss 曲率相等,即

ab(1+u2+v2)=a~b~(1+u~2+v~2)ab(1+u^2+v^2)=\widetilde a\widetilde b(1+\widetilde u^2+\widetilde v^2)

求偏导数,得到 Jacobi 矩阵非退化

(u~uu~vv~uv~v)(u~v~)=aba~b~1+u2+v21+u~2+v~2(uv)\begin{pmatrix}\dfrac {\partial \widetilde u }{\partial u } & \dfrac {\partial \widetilde u }{\partial v } \\ \\ \dfrac {\partial \widetilde v }{\partial u } & \dfrac {\partial \widetilde v }{\partial v }\end{pmatrix}\begin{pmatrix}\widetilde u \\ \\ \widetilde v\end{pmatrix}=\dfrac {ab}{\widetilde a\widetilde b}\cdot \dfrac {1+u^2+v^2}{1+\tilde u^2+\tilde v^2}\begin{pmatrix}u \\ \\ v\end{pmatrix}

展开后继续求偏导,得到左侧 Jacobi 矩阵是正交的。在第一基本形式换元后,比较系数

{a~2(u~2+1)(u~u)2+b~2(v~2+1)(v~u)2+2a~b~u~v~u~uv~u=a2(u2+1)a~2(u~2+1)(u~v)2+b~2(v~2+1)(v~v)2+2a~b~u~v~u~vv~v=b2(v2+1)a~2(u~2+1)u~uu~v+b~2(v~2+1)v~uv~v+a~b~u~v~(u~uv~v+u~vv~u)=abuv\begin{cases}\tilde a^2({\tilde u}^2+1)\left(\dfrac {\partial \tilde u }{\partial u }\right)^2+\tilde b^2({\tilde v}^2+1)\left(\dfrac {\partial \tilde v }{\partial u }\right)^2+2\tilde a\tilde b \tilde u\tilde v \dfrac {\partial \tilde u }{\partial u }\dfrac {\partial \tilde v }{\partial u }=a^2(u^2+1)\\ \\ \tilde a^2({\tilde u}^2+1)\left(\dfrac {\partial \tilde u }{\partial v }\right)^2+\tilde b^2({\tilde v}^2+1)\left(\dfrac {\partial \tilde v }{\partial v }\right)^2+2\tilde a\tilde b \tilde u\tilde v \dfrac {\partial \tilde u }{\partial v }\dfrac {\partial \tilde v }{\partial v }=b^2(v^2+1)\\ \\ \tilde a^2({\tilde u}^2+1)\dfrac {\partial \tilde u }{\partial u }\dfrac {\partial \tilde u }{\partial v }+\tilde b^2({\tilde v}^2+1)\dfrac {\partial \tilde v }{\partial u }\dfrac {\partial \tilde v }{\partial v }+\tilde a\tilde b \tilde u\tilde v \left(\dfrac {\partial \tilde u }{\partial u }\dfrac {\partial \tilde v }{\partial v }+\dfrac {\partial \tilde u }{\partial v }\dfrac {\partial \tilde v }{\partial u }\right)=ab uv\end{cases}

u=v=0u=v=0u~=v~=0\tilde u=\tilde v=0,从而解得

{a~2cos2θ+b~2sin2θ=a2a~2sin2θ+b~2cos2θ=b2(b~2a~2)sinθcosθ=0\begin{cases} \tilde a^2\cdot \cos^2\theta+\tilde b^2\cdot \sin^2\theta =a^2 \\ \\ \tilde a^2\cdot \sin^2\theta+\tilde b^2\cdot \cos^2\theta =b^2 \\ \\ (\tilde b^2-\tilde a^2)\cdot \sin\theta \cos\theta = 0 \end{cases}

分类讨论后,a~2=a2,b~2=b2\tilde a^2=a^2,\tilde b^2=b^2 或者 a~2=b2,b~2=a2\tilde a^2=b^2,\tilde b^2=a^2 时为等距变换。


Question.[Peng.Sec5.5].v=f1r1+f2r2\pmb v=f^1\pmb r_1+f^2\pmb r_2 是曲面 SS 的切向量场,证明:v\pmb v 的协变微分为

Dv=(dfα+Γβγαfβduγ)rα\mathrm D\pmb v=(\mathrm df^\alpha+\Gamma^\alpha_{\beta\gamma}f^\beta\mathrm du^\gamma)\pmb r_\alpha

v=fαrα\pmb v=f^\alpha \pmb r_\alpha,则

dv=dfαrα+fαdrα=dfαrα+fαduβ(Γαβγrγ+bαβn)\mathrm d\pmb v=\mathrm df^\alpha \pmb r_\alpha +f^\alpha \mathrm d\pmb r_\alpha=\mathrm df^\alpha \pmb r_\alpha +f^\alpha\mathrm du^\beta(\Gamma^\gamma_{\alpha\beta}\pmb r_\gamma +b_{\alpha\beta}\pmb n)

Dv=dvdv,nn=(dfγ+Γαβγfαduβ)rγ\mathrm D\pmb v=\mathrm d\pmb v-\langle \mathrm d\pmb v,\pmb n\rangle \pmb n=(\mathrm df^\gamma +\Gamma^\gamma_{\alpha\beta}f^\alpha \mathrm du^\beta)\pmb r_\gamma