# Chapter 2

# 1-10

Problem.1 Verify each of the following for arbitrary subsets A,BA,B of a space XX.

  1. AB=AB\overline{A\cup B}=\overline A\cup \overline B;
  2. ABAB\overline{A\cap B}\subseteq \overline A\cap \overline B;
  3. A=A\overline{\overline A}=\overline A;
  4. (AB)AB(A\cup B)^\circ\supseteq A^\circ \cup B^\circ;
  5. (AB)=AB(A\cap B)^\circ=A^\circ \cap B^\circ;
  6. (A)=A(A^\circ)^\circ=A^\circ;

Show that equality need not hold in (2) and (4).

采用相互包含和定义来证明,仅给出直观。

(1) 只需证明 ABA\cup B 的极限点属于 A,B\overline A,\overline B 至少其一。

(2) 只需证明 A,BA,B 的公共极限点都属于 A,B\overline A,\overline B

(3) A\overline {\overline A} 是包含 A\overline A 的最小闭集,而 A\overline A 本身是闭集,因此 A=A\overline {\overline A}=\overline A

(4) 注意到 AA^\circ 中的邻域也是 (AB)(A\cup B)^\circ 中的邻域。

(5) 注意到 ABA\cap B 的内点必须同时是 A,BA,B 的内点,反过来因为邻域的交仍是邻域,因此 A,BA,B 的内点的交也是 ABA\cap B 的内点。

(6) 开集的内部是其本身。

(7) 反例都考虑 A=Q,B=RQA=\mathbb Q,B=\mathbb R\setminus \mathbb Q


Problem.2. Find a family of closed subsets of the real line whose union is not closed.

考虑闭区间 [0,11/n][0,1-1/n],则

n=1[0,11/n]=[0,1)\bigcup _{n=1}^\infty [0,1-1/n]=[0,1)


Problem.3. Specify the interior, closure, and frontier of each of the following subsets of the plane:

  1. {(x,y):1<x2+y22}\{(x,y):1<x^2+y^2\leq 2\};
  2. E2\mathbb E^2 with both axes removed;
  3. E2{(x,sin(1/x)):x>0}\mathbb E^2-\{(x,\sin(1/x)):x> 0\}.

(1) 内点为环面 A(1,2)A(1,2),闭包为闭环面 A(1,2)\overline{A(1,2)},边界为两圆 C1,C2C_1,C_2

(2) 内点为自身,闭包为 E2\mathbb E^2,边界为两坐标轴。

(3) 内点为边界的补,闭包为 E2\mathbb E^2,边界为

{(x,sin(1/x)):x>0}{(0,y):1y1}\{(x,\sin(1/x)):x> 0\}\cup \{(0,y):-1\leq y\leq 1\}


Problem.4. Find all the limit points of the following subsets of the real line:

  1. {(1/m)+(1/n):m,n=1,2,}\{(1/m)+(1/n):m,n=1,2,\ldots\};
  2. {(1/n)sinn:n=1,2,}\{(1/n)\sin n:n=1,2,\ldots\}.

(1) 极限点为 {1/n:n=1,2,}{0}\{1/n:n=1,2,\ldots\}\cup \{0\}

(2) 极限点为 00


Remark. 刻画了稠密的局部性质。

Problem.5. If AA is a dense subset of a space XX, and if OO is open in XX, show that OAOO\subseteq \overline {A\cap O}.

对于任意 xOx\in O,因为 AAXX 中稠密,所以 xx 的任一邻域 xUOx\in U\subseteq O 都满足

(U{x})A(U\setminus \{x\})\cap A\neq \varnothing

这说明

(U{x}(AO)(U\setminus\{x\}\cap (A\cap O)\neq \varnothing


Proposition. 子空间的子空间仍然是原空间的子空间。

Problem.6. If YY is a subspace of XX, and ZZ a subspace of YY, prove that ZZ is a subspace of XX.

ZZ 上的开集为形如 ZUZ\cap U 的集合,其中 UUYY 的开集;YY 上的开集为形如 YVY\cap V 的集合,其中 VVXX 的开集。因此,ZZ 上的开集为

ZU=Z(YV)=(ZY)V=ZVZ\cap U=Z\cap (Y\cap V)=(Z\cap Y)\cap V=Z\cap V

其中 VVXX 的开集,因此 ZZXX 的子空间。


Remark. 子空间拓扑的闭集、闭包可以通过原空间的闭集、闭包来刻画。方法和开集一样。

Problem.7. Suppose YY is a subspace of XX. Show that a subset of YY is closed in YY if it is the intersection of YY with a closed set in XX. If AA is a subset of YY, show that we get the same answer whether we take the closure of AA in YY, or intersect YY with the closure of AA in XX.

如果 AAYY 的闭集,则存在 XX 的开集 UU 使得

YA=YUY\setminus A=Y\cap U

取关于 YY 的补集,得到

K=Y(YK)=YU=YUcK=Y\setminus(Y\setminus K)=Y\setminus U=Y\cap U^c

如果取 AAYY 中的闭包 AY\overline A^Y,则 AYYAX\overline A^Y\subseteq Y\cap \overline A^X。而 AX\overline A^XXX 中包含 AA 的最小闭集,因此只能有 AY=YAX\overline A^Y=Y\cap \overline A^X

Proposition. 子空间拓扑的开集(闭集)关系是保序的一一对应,具体而言

XYX1Y1......XnYnXn+1Yn+1......Y1=Y\X1Yn=Y\XnYn+1=Y\Xn+1


Problem.8. Let YY be a subspace of XX. Given AYA\subseteq Y, write A˚Y\mathring A_Y for the interior of AA in YY and A˚X\mathring A_X for the interior of AA in XX. Prove that A˚XA˚Y\mathring A_X\subseteq \mathring A_Y, and give an example to show the two may not be equal.

XX 中的开集限制在 YY 的子空间拓扑下还是开集。考虑 X=R,Y=QX=\mathbb R,Y=\mathbb Q,则 A=(0,1)QA=(0,1)\cap \mathbb Q,在 YY 中的内部为自身,而在 XX 中的内部为空集。


Problem.9. Let YY be a subspace of XX. If AA is open(closed) in YY, and if YY is open(closed) in XX, show that AA is open(closed) in XX.

AAYY 的开集,则存在 YY 的开集 UU 使得

A=YUA=Y\cap U

这表明 AA 可以写成两个 XX 的开集的交,因此 AAXX 的开集。闭集同理,参考 [Arm.C2,T7] 的结论。


Proposition. A(A˚)\partial A\supseteq \partial (\mathring A)

Problem.10. Show that the frontier of a set always contains the frontier of its interior. How does the frontier of ABA\cup B relate to the frontiers of AA and BB?

边界点的定义是不属于内点和外点的点,因此 A˚\mathring A 的边界点不是 A˚\mathring A 的内点,即不是的点,所以不是 AA 的内点;另一方面,它不是 A˚\mathring A 的外点,因此对于其任意邻域,都包含 A˚\mathring A 中的点,即包含 AA 中的点,因此不是 AA 的外点。综上,A(A˚)\partial A\supseteq \partial (\mathring A)

# 11-20

[重要]

Remark. 我们对交集和并集的定义是

xAAAAA,xAx\in \bigcup_{A\in\mathcal A}A\iff \exists A\in \mathcal A,x\in A

xAAAAA,xAx\in \bigcap_{A\in\mathcal A}A\iff \forall A\in \mathcal A,x\in A

所以当 A=\mathcal A=\varnothing 时,空并集是空集,而空交集是全集。

Problem.11. Let XX be the set of real numbers and β\beta the family of all subsets of the form {x:ax<b,a<b}\{x:a\leq x<b,a<b\}. Prove that β\beta is a base for a topology on XX and that in this topology each member of β\beta is both open and closed. Show that this topology does not have a countable base.

首先 β\beta 至少满足

[n,n+1)=R,[n,n+1)[n+1,n+2)=\bigcup [n,n+1)=\mathbb R,\quad [n,n+1)\cap [n+1,n+2)=\varnothing

在这个拓扑结构下,(,a),[b,+)(-\infty,a),[b,+\infty) 都是开集,因此任意基础开集

[a,b)=R((,a)[b,+))[a,b)=\mathbb R\setminus \bigl((-\infty,a)\cup [b,+\infty)\bigr)

都是闭集。

证明该拓扑没有可数基,反证法,设 B1,B2,B_1,B_2,\ldots 是一个可数基 B\mathcal B',那么任意开集都可以由 B\mathcal B' 中的成员的并表示。考虑开集 [x,x+1)[x,x+1),则一定存在 BiBB_i\in\mathcal B' 使得

xBi[x,x+1)x\in B_i\subseteq [x,x+1)

否则,xx 没有包含在 B\mathcal B' 中的任何一个成员里,矛盾。这说明 infBi=x\inf B_i=xxx 可以是任意实数,因此 B\mathcal B' 至少有不可数多个成员,矛盾。


Proposition. 第二可数空间是可分空间。

Problem.12. Show that if XX has a countable base for its topology, then XX contains a countable dense subset. A space whose topology has a countable base is called a second countable (第二可数) space. A space which contains a countable dense subset is said to be separable (可分).

根据依赖选择公理,从每个基础开集中选取一个点,构成可数集 AA。对于任意 xXAx\in X\setminus A 及其邻域 UU,因为 B\mathcal BXX 的基,所以存在 BBB\in \mathcal B 使得 xBUx\in B\subseteq U,而 BB 中有 AA 的点,因此 A(U{x})A\cap (U\setminus \{x\})\neq \varnothing。这说明 AAXX 中稠密。


Remark. 连续函数诱导的闭集。

Problem.13. If f:RRf:\mathbb R\to\mathbb R is a map(i.e., a continuous function), show that the set of points which are left fixed by ff is a closed subset of R\mathbb R. If gg is a continuous real-valued function on XX show that the set {x:g(x)=0}\{x:g(x)=0\} is closed.

显然映射 g:=fid:RRg:=f-\mathrm {id}:\mathbb R\to\mathbb R 是连续的,所以只需要考虑 gg 的零点集,因为零点的极限点仍然是零点,所以零点集是闭集。


Problem.14. Prove that the function h(x)=ex/(1+ex)h(x)=e^x/(1+e^x) is a homeomorphism from the real line to the open interval (0,1)(0,1).

需要验证双射、连续及其逆连续。双射由单调性推出,连续性由复合推出,逆连续性同样由复合推出,且

h1(y)=ln(y1y)h^{-1}(y)=\ln\biggl(\frac y{1-y}\biggr)


Problem.15. Let f:E1E1f:\mathbb E^1\to \mathbb E^1 be a map and define its graph Γf:E1E2\Gamma_f:\mathbb E^1\to\mathbb E^2 by Γf(x)=(x,f(x))\Gamma_f(x)=(x,f(x)). Show that Γf\Gamma_f is continuous and that its image(taken with the topology induced from E2\mathbb E^2) is homeomorphic to E1\mathbb E^1.

由连续函数的性质,f(Bδ(ε)(x))Bε(f(x))f(B_{\delta(\varepsilon)}(x))\subseteq B_\varepsilon(f(x)),其中不妨设 δ(ε)<ε\delta(\varepsilon)<\varepsilon,则

(Γf)(Bδ(ε)(x))B2ε(Γf(x)),xX,ε>0(\Gamma_f)(B_{\delta(\varepsilon)}(x))\subseteq B_{\sqrt 2\varepsilon}(\Gamma_f(x)),\quad \forall x\in X,\varepsilon>0

这说明 Γf\Gamma_fΓf(E1)\Gamma_f(\mathbb E^1) 的任意基础开集的原像在 E1\mathbb E^1 中是开集,因而 Γf\Gamma_f 是连续的。显然 Γf\Gamma_f 是双射(考虑第一分量),而且其逆映射 π:Γf(E1)E1\pi:\Gamma_f(\mathbb E^1)\to \mathbb E^1 也是连续的

πBδ(ε)(Γf(x))Bε(x),xX,ε>0\pi\circ B_{\delta(\varepsilon)}(\Gamma_f(x))\subseteq B_\varepsilon(x),\quad \forall x\in X,\varepsilon>0

因此 Γf\Gamma_f 是一个同胚。


Problem.16. What topology must XX have if every real-valued function defined on XX is continuous?

考虑测试函数

f:XR,f(x)={0,xx01,x=x0f:X\to\mathbb R,\quad f(x)=\begin{cases}0,&x\neq x_0\\1,&x=x_0\end{cases}

{x0}=f1(B(1,1/2))\{x_0\}=f^{-1}(B(1,1/2))XX 的开集,所以 XX 必须是离散拓扑。


Remark. 即使是相同空间,配备不同拓扑,恒等映射也不一定是同胚。泛函分析中也有类似的例子。

Problem.17. Let XX denote the set of all real numbers with the finite-complement topology, and define f:E1Xf:\mathbb E^1\to X by f(x)=xf(x)=x. Show that ff is continuous, but is not a homeomorphism.

在有限补拓扑下,开集都是补集有限的集合,这些集合都是 E1\mathbb E^1 的开集;但反过来不成立。


Problem.18. Suppose X=A1A2X=A_1\cup A_2\cup \ldots, where AnA˚n+1A_n\subseteq \mathring A_{n+1} for each nn. If XYX\to Y is a function such that, for each nn, fAn:AnYf|_{A_n}:A_n\to Y is continuous with respect to the induced topology on AnA_n, show that ff is itself continuous.

对于任意开集 VYV\subseteq Y,结合相对开集的定义,有

f1(V)=n=1fAn1(V)=n=1AnUn=n=1Ann=1Un=n=1Unf^{-1}(V)=\bigcup _{n=1}^\infty f|_{A_n}^{-1}(V)=\bigcup^\infty_{n=1}A_n\cap U_n=\bigcup^\infty_{n=1}A_n\cap \bigcup^\infty_{n=1}U_n=\bigcup^\infty_{n=1}U_n

这是因为 UnAn=Un+1AnU_n\cap A_n=U_{n+1}\cap A_n


Problem.19. The characteristic function (特征函数) of a subset AA of a space XX is the real-valued function on XX which assigns the value 11 to points of AA and 00 to all other points. Describe the frontier of AA in terms of this function.

边界点是特征函数不连续的点。


Problem.20. An open map (开映射) is one which sends open sets to open sets; a closed map (闭映射) takes closed sets to closed sets. Which of the following maps are open or closed?
(a) The exponential map xeixx\mapsto e^{ix} from the real line to the circle.
(b) The folding map f:R2R2f:\mathbb R^2\to \mathbb R^2 given by f(x,y)=(x,y)f(x,y)=(x,|y|).
(c) The map which winds the plane three times on itself given, in terms of complex numbers, by zz3z\mapsto z^3.

(a) 开映射,但不是闭映射。

(b) 闭映射,但不是开映射。

(c) 开映射,闭映射。

# 21-26

Problem.21. Show that the unit ball (单位球) (the set of points whose coordinates satisfy x12+x22++xn21x_1^2+x_2^2+\ldots +x_n^2\leq 1) and the unit cube (单位立方体) (points whose coordinates satisfy xi1,1in|x_i|\leq 1,1\leq i\leq n) are homeomorphic if they are both given the subspace topology from Rn\mathbb R^n.

考虑连续映射 f:SnCubef:\mathbb S^n\to \partial \mathrm{Cube},定义为

f:(x1,,xn)(x1,,xn)max(x1,,xn)f:(x_1,\ldots,x_n)\mapsto \frac{(x_1,\ldots,x_n)}{\max(|x_1|,\ldots,|x_n|)}

从而可以诱导单位球和单位立方体的连续映射,这个连续映射只改变模长,不改变方向,因此是双射。容易验证逆映射(只关心球面和立方体面,单位球和单位立方体的映射是自然的)也是连续的。

g:(y1,,yn)(y1,,yn)y12++yn2g:(y_1,\ldots,y_n)\mapsto \frac{(y_1,\ldots,y_n)}{\sqrt{y_1^2+\ldots+y_n^2}}

Problem.22. Find a Peano curve which fills out the unit square in R2\mathbb R^2.

Problem.23.

Problem.24.

Problem.25.

Problem.26.


Problem.27. Show d(x,A)=0d(x,A)=0 iff xx is a point of A\overline A.

根据度量空间关于极限点的定义即可证明。


Problem.28. If A,BA,B are disjoint closed subsets of a metric space, find disjoint open sets U,VU,V such that AUA\subseteq U and BVB\subseteq V.

由于两个闭集不交,因此对于任意 aAa\in A,都有 d(a,B)>0d(a,B)>0,取

U=aAB(a,d(a,B)/2),V=bBB(b,d(b,A)/2)U=\bigcup_{a\in A}B\bigl(a,d(a,B)/2\bigr),\quad V=\bigcup_{b\in B}B\bigl(b,d(b,A)/2\bigr)

U,VU,V 是所求的开集。


Problem.29. Show one can define a distance function on an arbitrary set XX by d(x,y)=1d(x,y)=1 if xyx\neq y and d(x,x)=0d(x,x)=0. What topology does dd give to XX?

离散拓扑,每个点都是开集。


Problem.30. Show that every closed subset of a metric space is the intersection of a countable number of open sets.

考虑开集族

Un={x:d(x,A)<1/n},n=1,2,U_n=\{x:d(x,A)<1/n\},\quad n=1,2,\ldots

# 31-36

Problem.31. If A,BA,B are subsets of a metric space, their 分离距离 (distance apart) d(A,B)d(A,B) is the infimum of the numbers d(x,y)d(x,y) where xAx\in A and yBy\in B. Find two disjoint closed subsets of the plane which are zero distance apart. The diameter (直径) of AA is the supremum of the numbers d(x,y)d(x,y) where x,yAx,y\in A. Check that both of the closed sets which you have just found have infinite diameter.

考虑闭集,满足分离距离为 00

A={(x,1/x):x>0},B={(x,1/x):x>0}A=\{(x,1/x):x>0\},B=\{(x,-1/x):x>0\}

并且直径均为无穷大。


Problem.32. If AA is a closed subset of a metric space XX, show that any map f:ARnf:A\to\mathbb R^n can be extended over XX.

根据 Tietze 延拓定理可知,这只不过是同时考虑 nn 个实值函数的延拓问题。


Problem.33. Find a map from R1{0}\mathbb R^1\setminus \{0\} to R1\mathbb R^1 which cannot be extended over R1\mathbb R^1.

考虑映射 x1/xx\mapsto 1/x


Problem.34. Let f:CCf:C\to C be the identity map of the unit circle in the plane. Extend ff to a map from R2{0}\mathbb R^2\setminus \{0\} to CC. Would you expect to be able to extend ff over all of R2\mathbb R^2?

定义

f~:R2{0}R,xf(x/x)\tilde f:\mathbb R^2\setminus \{0\}\to \mathbb R,\quad x\mapsto f(x/|x|)


Problem.35. Given a map f:XRn+1{0}f:X\to\mathbb R^{n+1}\setminus\{0\} find a map g:XSng:X\to \mathbb S^n which agrees with ff on the set f1(Sn)f^{-1}(\mathbb S^n).

定义

g:XSn,xf(x)/f(x)g:X\to \mathbb S^n,\quad x\mapsto {f(x)}/{|f(x)|}


Problem.36. If XX is a metric space and AA closed in XX, show that a map f:ASnf:A\to\mathbb S^n can always be extended over a neighborhood of AA, in other words over a subset of XX which is a neighborhood of each point of AA. (Think of Sn\mathbb S^n as a subspace of Rn+1\mathbb R^{n+1} and extend ff to a map of XX into Rn+1\mathbb R^{n+1}. Now use Problem 35.)

考虑 Problem 32,可以将 AA 延拓定义到 Rn+1\mathbb R^{n+1};只要邻域足够小,映射值就不会是 00,因此可以使用 Problem 35 中的方法进行延拓。

# Chapter 3

待完成:Problem 5

# 1-10

Problem.1. Find an open cover of R1\mathbb R^1 which does not contain a finite subcover. Do the same for [0,1)[0,1) and (0,1)(0,1).

对于 R1\mathbb R^1,考虑开覆盖 (n,n+2)(n,n+2);对于 [0,1)[0,1),考虑开覆盖 [0,11/n)[0,1-1/n);对于 (0,1)(0,1),考虑开覆盖 (1/n,11/n)(1/n,1-1/n)


Problem.2. Let SS1S2S\supseteq S_1\supseteq S_2\supseteq \ldots be a nested sequence of squares in the plane whose diameters tend to zero as we proceed along the sequence. Prove that the intersection of all these squares consists of exactly one point.

反证法,不然存在两点 x,yx,y 都在所有的正方形中,则 d(x,y)>0d(x,y)>0,但随着正方形的直径趋于 00,总存在一个正方形使得其直径小于 d(x,y)d(x,y),矛盾。


Problem.3. Use the Heine-Borel theorem to show that an infinite subset of a closed interval must have a limit point.

闭区间是紧空间,如果无限子集没有极限点,则考虑其每个点的邻域,它们不包含其他该无限子集的点,这些邻域构成一个开覆盖,但没有有限子覆盖,矛盾。


Problem.4. Rephrase the definition of compactness in terms of closed sets.

紧空间当且仅当对于任意闭集族,如果任意有限子集的交非空,则整个闭集族的交非空。这是对开覆盖定义的对偶表述。


如何严谨说明?

Problem.5. Which of the following are compact?
(a) The space of rational numbers;
(b) Sn\mathbb S^n with a finite number of points removed;
(c) The torus with an open disc removed;
(d) The Klein bottle;
(e) The Mobius strip with its boundary circlce removed.

(a) 不是;(b) 不是;(c) 是;(d) 是;(e) 不是。

这些特殊曲面可以嵌入到 Rn\mathbb R^n 中。


Problem.6. Show that the Hausdorff condition cannot be relaxed in the theorem below: a one-one, onto, and continuous function from a compact space XX to a Hausdorff space YY is a homeomorphism.

只需要寻找紧集非闭的例子,例如有限补拓扑。


Problem.7. Show that Lebesgue's lemma fails for the plane.

Lebesgue 引理要求紧空间。基于此,我们构造平面的开覆盖

U0=(,1)×R,Un=(n11/n,n+1/n)×RU_0=(-\infty,1)\times \mathbb R,\quad U_n=(n-1-1/n,n+1/n)\times \mathbb R


Problem.8. (Lindelof's theorem). If XX has a countable base for its topology, prove that any open cover of XX contains a countable subcover.

设可数基的基础开集为 BnB_n,任意开覆盖为 UαU_\alpha,则对于任意 xXx\in X,存在 UαU_\alpha 使得 xUαx\in U_\alpha,由可数基的定义,存在 BnB_n 使得 xBnUαx\in B_n\subseteq U_\alpha。记 Uα:=Uα(n)U_\alpha:= U_{\alpha(n)},则

X=n=1Bnn=1Uα(n)αUαX=\bigcup_{n=1}^\infty B_n\subseteq \bigcup_{n=1}^\infty U_{\alpha(n)}\subseteq \bigcup_{\alpha}U_\alpha


Problem.9. Prove that two disjoint compact subsets of a Hausdorff space always possess disjoint neighborhoods.

记不相交紧集为 A,BA,B,先固定 aAa\in A,考虑对任意 bBb\in B,使用 Hausdorff 性质,再使用BB 的紧性选取有限开覆盖,得到 aa 的邻域 UaU_aBB 的邻域 VaV_a 使得 UaVa=U_a\cap V_a=\varnothing。变动 aAa\in A,使用 AA 的紧性,选取有限开覆盖。


Problem.10. Let AA be a compact subset of a metric space XX. Show that the diameter of AA is equal to d(x,y)d(x,y) for some pair of points x,yAx,y\in A. Given xXx\in X, show that d(x,A)=d(x,y)d(x,A)=d(x,y) for some yAy\in A. Given a closed subset BB, disjoint from AA, show that d(A,B)>0d(A,B)>0.

由下确界定义构造 d(xn,yn)diam(A)d(x_n,y_n)\to \mathrm{diam}(A) 的序列,使用紧性选取收敛子列,得到极限点 x,yx,y,则 d(x,y)=diam(A)d(x,y)=\mathrm{diam}(A)。对 d(x,A)d(x,A) 同理。对于 d(A,B)d(A,B),假设 d(A,B)=0d(A,B)=0,则由上存在 aAa\in A 使得 d(a,B)=0d(a,B)=0,这说明 aaBB 的极限点,矛盾。

# 11-20

Problem.11. Find a topological space and a compact subset whose closure is not compact.

R\mathbb R 配备射线拓扑,开集形如 (,a)(-\infty,a),则 {0}\{0\} 是紧集,但其闭包 [0,+)[0,+\infty) 不是紧集。


Problem.12. Do the real numbers with the finite-complement topology form a compact space? Answer the same question for the half-open interval topology (see Problem 11 of Chapter 2).

有限补拓扑是紧空间,特别地,其子空间都是紧空间。半开拓扑不是紧空间,例子为

[0,1)n=1[0,11/n)[0,1)\subseteq \bigcup_{n=1}^\infty [0,1-1/n)


[补充] 开映射和闭映射是无关的。

Problem.13. Let f:XYf:X\to Y be a closed map with the property that the inverse image of each point of YY is a compact subset of XX. Show that f1(K)f^{-1}(K) is compact whenever KK is a compact in YY. Can you remove the condition that ff be closed?

考虑 f1(K)f^{-1}(K) 的任意闭集族,有限交非空,因为 ff 是闭映射,将这些闭集映到 YY 中,成为 KK 的闭集族,使用 KK 的紧性,闭集族的交非空,拉回 f1(K)f^{-1}(K) 可知它的闭集族的交也非空。


Problem.14. If f:XYf:X\to Y is a one-one map, and if f:Xf(X)f:X\to f(X) is a homeomorphism, when we give f(X)f(X) the induced topology from YY, we call ff an embedding (嵌入) of XX in YY. Show that a one-one map from a compact space to a Hausdorff space must be an embedding.

对于紧空间的任意闭集 UUf(U)f(U) 是闭集,结合双射推出逆映射连续。


Problem.15. A space is locally compact (局部紧) if each of its points has a compact neighborhood. Show that the following are all locally compact: any compact space; Rn\mathbb R^n; any discrete space; any closed subset of a locally compact space. Show that the space of rationals is not locally compact. Check that local compactness is preserved by a homeomorphism.

紧邻域就是该点在其内部的紧集。对于紧空间,取全空间;对于 Rn\mathbb R^n,取闭球是紧集;对于离散拓扑,取单点集,因为单点集是开集;对于局部紧空间的闭子集,存在紧邻域,取其与闭子集的交,在子空间拓扑下是紧邻域。有理数空间不是局部紧的,因为在子空间拓扑下,任意内部非空的紧集都包含无理数点,据此构造反例。

同胚保持局部紧性质,因为其保持开集和紧集,以及序关系。


Problem.16. Suppose XX is locally compact and Hausdorff. Given xXx\in X and a neighborhood UU of xx, find a compact neighborhood of xx which is contained in UU.

对于任意点 xx 都存在紧邻域 VV,取 VUV\setminus U,这是闭集,从而是紧集。由 Hausdorff 性质,可以证明存在不交开集 S,TS,T 使得

xSVTU,VUTx\in S\subseteq V\setminus T\subseteq U,\quad V\setminus U\subseteq T

VTV\setminus Txx 的紧邻域,且包含在 UU 中。


Problem.17. Let XX be a locally compact Hausdorff space which is not compact. Form a new space by adding one extra point, usually denoted by \infty, to XX and taking the open sets of X{}X\cup\{\infty\} to be those of XX together with sets of the form (XK){}(X-K)\cup\{\infty\}, where KK is a compact subset of XX. Check the axioms for a topology, and show that X{}X\cup \{\infty\} is a compact Hausdorff space which contains XX as a dense subset. The space X{}X\cup \{\infty\} is called the one-point compactification (一点紧化) of XX.

验证拓扑公理,进行形式运算即可,注意紧集的有限并仍然是紧集。根据 Hausdorff 性质,紧集都是闭集,因此 X{}X\cup \{\infty\} 的任意开覆盖都至少包含一个形如 (XK){}(X-K)\cup\{\infty\} 的开集,剩下的紧集 KK 有有限子覆盖,所以 X{}X\cup \{\infty\} 是紧空间。Hausdorff 空间是显然的。将 XX 视为稠密子空间也是显然的,因为有形如 (XK){}(X-K)\cup\{\infty\} 的开集。


Problem.18. Prove that Rn{}\mathbb R^n\cup\{\infty\} is homeomorphic to Sn\mathbb S^n. (Think first of the case n=2n=2. Stereographic projection gives a homeomorphism between R2\mathbb R^2 and S2\mathbb S^2 minus the north pole, points 'out towards infinity' in the plane becoming points near to the north pole on the sphere. Think of replacing the north pole in S2\mathbb S^2 as adding a point at \infty to R2\mathbb R^2.)

考虑球极投影,记北极点为 NN,补充定义 f(N)=f(N)=\infty。则

Sn{N}Rn\mathbb S^n\setminus \{N\}\cong \mathbb R^n

事实上,由 Problem.17 的一点紧化,只需要验证 Sn\mathbb S^n 包含 NN 的开集与 Rn{}\mathbb R^n\cup \{\infty\} 包含 \infty 的开集一一对应即可。


[重要] 不同胚的拓扑空间,其一点紧化也可能是同胚的。

Problem.19. Let XX and YY be locally compact Hausdorff spaces and let f:XYf:X\to Y be an onto map. Show ff extends to a map from X{}X\cup\{\infty\} onto Y{}Y\cup\{\infty\} iff f1(K)f^{-1}(K) is compact for each compact subset KK of YY (i.e., iff ff is a proper map (真映射)). Deduce that if XX and YY are homeomorphic spaces then so are their one-point compactifications. Find two spaces which are not homeomorphic but which have homeomorphic one-point compactifications.

充分性验证连续性,只需要验证包含 \infty 的开集的原像也是开集。必要性,考虑 (YK){}(Y-K)\cup\{\infty\} 的原像 (XT){}(X-T)\cup \{\infty\},这要求 TT 是紧集,而正好 f1(K)=Tf^{-1}(K)=T。由连续函数将紧集映到紧集,所以同胚空间的一点紧化也是同胚的。对于不同胚的空间,其一点紧化也可以是同胚的。考虑 X=[0,1),Y=(0,1)X=[0,1),Y=(0,1) 配备子空间拓扑,它们不同胚,同样可以通过连通性推出矛盾,因为 XX 去掉 00 还是连通的,但是 YY 中每一个点都是分割点。但它们的一点紧化都是 S1\mathbb S^1。补充一点,XXS1\mathbb S^1 也不同胚,因为连通性推出矛盾。


Problem.20. If X×YX\times Y has the product topology, and if AX,BYA\subseteq X,B\subseteq Y, show that

A×B=A×B,(A×B)=A×B\overline {A\times B}=\overline A\times \overline B,\quad (A\times B)^\circ=A^\circ \times B^\circ

(A×B)=(A×B)(A×B)\partial (A\times B)=(\partial A\times \overline B)\cup (\overline A\times \partial B)

一切从基础开集出发即可,注意到乘积拓扑将基础开集的乘积作为基础开集。证明前两个结论后,注意到最后一个结论是它们的差集。

# 21-30

Problem.21. If AA and BB are compact, and if WW is a neighbourhood of A×BA\times B in X×YX\times Y, find a neighbourhood UU of AA in XX and a neighbourhood VV of BB in YY such that U×VWU\times V\subseteq W.

固定 aAa\in A{a}×B\{a\}\times B 是紧集,因此考虑开覆盖,得到有限个基础开集 Uai×VaiU_{a_i}\times V_{a_i} 覆盖,再取子开集 Oa:=UaiVaiO_a:=\bigcap U_{a_i}\cup \bigcup V_{a_i},变动 aAa\in A,使用 AA 的紧性,可以得到有限个 OajO_{a_j} 覆盖 A×BA\times B,同样 OaO_a 的构造方法得到所求的邻域。


Problem.22. Prove that the product of two second-countable spaces is second-countable, and that the product of two separable spaces is separable.

第二可数空间指的是有可数基的拓扑空间。乘积空间的拓扑基是两个空间的拓扑基的乘积,所以是可数的,因此乘积空间是第二可数空间。可分空间是包含可数稠密子集的空间。根据可数的性质,乘积仍然是可数的。


Problem.23. Prove that [0,1)×[0,1)[0,1)\times [0,1) is homeomorphic to [0,1]×[0,1)[0,1]\times [0,1).

直观上看,前者是正方形去掉上、右边界(包含端点),后者是正方形去掉右边界(包含端点)。参照 Chapter 2 Problem 21 的方法,可以构造正方形和圆盘的同胚,只不过前者去掉了一条闭半圆弧,后者去掉了四分之一的闭半圆弧,构造角度同胚调整即可。


Problem.24. Let x0Xx_0\in X and y0Yy_0\in Y. Prove that the function f:XX×Y,g:YX×Yf:X\to X\times Y, g:Y\to X\times Y defined by f(x)=(x,y0)f(x)=(x,y_0) and g(y)=(x0,y)g(y)=(x_0,y) are embeddings (as defined in Problem 14).

只需考虑 ff 的情形。ff 是双射,通过如下复合,注意到连续映射的乘积仍然是连续映射

X(id,cy0)X×{y0}ιX×YX\xrightarrow{(\mathrm{id},c_{y_0})}X\times \{y_0\}\xrightarrow{\iota}X\times Y

常值映射、恒等映射和嵌入映射都是连续的。同样可以证明逆映射(投影)是连续的。


Problem.25. Show that the diagonal map Δ:XX×X\Delta:X\to X\times X defined by Δ(x)=(x,x)\Delta(x)=(x,x) is indeed a map, and check that XX is Hausdorff iff Δ(X)\Delta(X) is closed in X×XX\times X.

同上,这是恒等映射的乘积,再复合上嵌入映射,所以是连续映射。充分性,因为 Δ(X)\Delta(X) 是闭集,所以对于任意不同两点 x,yx,y(x,y)(x,y) 都不是 Δ(X)\Delta(X) 的极限点,因此存在基础开集 U×VU\times V 使得 (x,y)U×V(x,y)\in U\times VUV=U\cap V=\varnothing。必要性,直接由 Hausdorff 性质选取不交开集,乘积开集内部不包含对角线上的点。


Problem.26. We know that the projections p1:X×YXp_1:X\times Y\to X, p2:X×YYp_2:X\times Y\to Y are open maps. Are they always closed?

因为乘积空间的拓扑结构是使得投影映射连续的最小拓扑结构,同时投影映射将基础开集映为开集,所以是开映射。但不一定是闭映射,考虑 R×R\mathbb R\times \mathbb R 的投影映射,将闭集 {xy=1:x,y>0}\{xy=1:x,y>0\} 映为开集 (0,)(0,\infty)


Problem.27. Given a countable number of spaces X1,X2,X_1,X_2,\ldots, a typical point of the product Xi\prod X_i will be written x=(x1,x2,)x=(x_1,x_2,\ldots). The product topology (乘积拓扑) on Xi\prod X_i is the smallest topology for which all of the projections pi:XiXip_i:\prod X_i\to X_i, pi(x)=xip_i(x)=x_i are continuous. Construct a base for this topology from the open sets of the spaces X1,X2,X_1,X_2,\ldots.

这是最小拓扑,因此至少要求包含 pi1(Ui)p_i^{-1}(U_i),其中 UiU_iXiX_i 的开集。由此生成的拓扑即为乘积拓扑,形如

i=1npi1(Ui)=U1×U2××Un×i=n+1Xi\prod_{i=1}^n p_i^{-1}(U_i)=U_1\times U_2\times \ldots \times U_n\times \prod_{i=n+1}^\infty X_i

这里的下标是对应任意 nn 个空间,并不一定是前 nn 个空间。


Problem.28. If each XiX_i is a metric space, the topology on XiX_i being induced by a metric did_i, prove that

d(x,y)=i=112idi(xi,yi)1+di(xi,yi)d(x,y)=\sum_{i=1}^\infty \frac{1}{2^i}\frac{d_i(x_i,y_i)}{1+d_i(x_i,y_i)}

defines a metric on Xi\prod X_i which induces the product topology.

验证度量的良定性和度量公理,显然。

/////////////////////////////////////


Problem.29. The box topology (箱拓扑) on Xi\prod X_i has as base all sets of the form U1×U2×U_1\times U_2\times \ldots where UiU_i is open in XiX_i. Show that the box topology contains the product topology, and that the two are equal iff XiX_i is an indiscrete space for all but finitely many values of ii. (XX is an indiscrete space (不可分空间) if the only open sets are \varnothing and XX.)

、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、


Problem.30. Let XX be the set of all points in the plane which have at least one rational coordinate. Show that XX, with the induced topology, is a connected space.

考虑任意两点,取有理分量构造折线段即可。

# 31-40

[重要] 强化连通性的概念理解。

Problem.31. Give the set of real numbers the finite-complemenet topology. What are the components of the resulting space? Answer the same question for the half-open interval topology.

对于有限补空间,只有一个连通分支。假设全空间不连通,则存在既开又闭的非平凡子集,矛盾。对于半开区间拓扑,首先全空间不连通,因为其可以拆解成 (,a)[a,)(-\infty,a)\cup[a,\infty) 为两个开集的不交并。进一步可以看到 [a,b)[a,b) 也不连通,所以只能有单点集是连通分支。


Problem.32. If XX has only a finite number of components, show that each component is both open and closed. Find a space none of whose components are open sets.

连通分支构成 XX 的划分,闭集的有限并仍然是闭集。考虑 Problem 31 的半开拓扑,则其连通分支都是单点集,但单点集不是开集。


Problem.33. (Intermediate value theorem). If f:[a,b]R1f:[a,b]\to\mathbb R^1 is a map such that f(a)<0f(a)<0 and f(b)>0f(b)>0, use the connectedness of [a,b][a,b] to establish the existence of a point cc for which f(c)=0f(c)=0.

连续映射保持连通性。


Problem.34. A space XX is locally connected (局部连通) if for each xXx\in X, and each neighbourhood UU of xx, there is a connected neighbourhood VV of xx which is contained in UU. Show that any euclidean space, and therefore any space which is locally euclidean (like a surface), is locally connected. If X={0}{1/n:n=1,2,}X=\{0\}\cup\{1/n:n=1,2,\ldots\} with the subspace topology from the real line, show that XX is not locally connected.

Euclid 空间是局部连通的,因为任意开球都是连通的。同胚保持连通性,因此局部 Euclid 空间也是局部连通的。对于 XX,在 00 处不是局部连通的。


Problem.35. Show that local connectedness is preserved by a homeomorphism, but need not be preserved by a continuous function.

这正是 Problem 34 要证明的问题。因为同胚保持开集和连通性,如果 AA 是局部连通的,并且 ABA\cong B,那么对于任意 xBx\in B 及其邻域 UU,取 f1(U)=VAf^{-1}(U)=V\subseteq A,则 f1(x)Vf^{-1}(x)\in V 且由局部连通性知道存在连通邻域 WVW\subseteq V,因此 f(W)Uf(W)\subseteq Uxx 的连通邻域。


[补充] 两个相交连通集的并是连通的,两两不相互分离的连通集族的并是连通的。

Problem.36. Show that XX is locally connected iff every component of each open subset of XX is an open set.

必要性。如果 XX 局部连通,则对于任意开子集 UU 作为子空间,其任一连通分支 CC 上取任意一点 xCx\in C,存在连通邻域 VV,则 VCV\cap C\neq \varnothing,所以由连通分支定义知道,VCV\subseteq C,因此 CC 是开集。充分性。对于任意点 xx 及其邻域 UU,则考虑 UU 的子空间拓扑,其上某一条连通分支 CC 包含 xx,则 CUC\subseteq U 是开集,且是 xx 的连通邻域。


Problem.37. Show that the continuous image of a path-connected space is path-connected.

连续像指的是一个连续函数作用在这个空间上得到的像空间。对于像空间的任意两点 x,yx,y,考虑原像空间的两点(不一定唯一)使得 f(x0)=x,f(y0)=yf(x_0)=x,f(y_0)=y,由路径连通性,存在路径连接 x0,y0x_0,y_0,将该路径映射到像空间即得到所求路径。


Problem.38. Show that Sn\mathbb S^n is path-connected for n>0n>0.

对于球面任意两点,选取第三点作为极点,使用球极投影将两点映射到平面上,连接后再映射回球面即可。


Problem.39. Prove that product of two path-connected spaces is path-connected.

对于乘积空间的任意两点 (x1,y1),(x2,y2)(x_1,y_1),(x_2,y_2),根据分量空间的道路连通性,可以选取道路,期间第二分量保持 y1y_1 不变,这样就可以连接 (x1,y1)(x_1,y_1)(x2,y1)(x_2,y_1);再选取道路,对第二分量同样操作即可。


Problem.40. If AA and BB are path-connected subsets of a space, and if ABA\cap B is nonempty, prove that ABA\cup B is path-connected.

选取 ABA\cap B 中的点 x0x_0,对于任意两点 aA,bBa\in A,b\in B,连接 aax0x_0,再连接 x0x_0bb 即可。

# 41-44

Problem.41. Find a path-connected subset of a space whose closure is not path-connected.

拓扑学家的正弦曲线。补充一点,连通集的闭包是连通的,但道路连通集的闭包不一定是连通的。

{(x,sin(1/x)):0<x1}{(0,y):1y1}\{(x,\sin(1/x)):0<x\leq 1\}\cup \{(0,y):-1\leq y\leq 1\}

对于 (0,1)(0,1),它和正弦曲线上的点 —— 不妨设为 pp—— 不是道路连通的,因为连接它们的道路 γ(t)\gamma(t) 是连续映射,当道路参数 t1t\to 1 时,道路点应趋近于 γ(t)(0,1)\gamma(t)\to (0,1),但在正弦曲线上不论 tt 多小,道路点的纵坐标都不会趋近于 11(横坐标迫使它依照正弦曲线向 yy 轴移动)。矛盾。


Problem.42. Show that any indiscrete space is path-connected.

不可分空间是平凡的。所以取道路 γ(t)\gamma(t)[0,1)[0,1) 上恒等于某个点,在 11 处取另一个点。在不可分空间中,这是连续映射,所以确实是道路。


Problem.43. A space XX is locally path-connected if for each xXx\in X, and each neighbourhood UU of xx, there is a path-connected neighbourhood VV of xx which is contained in UU. Is the topologist's sine curve locally path-connected? Convert the space {0}{1/n:n=1,2,}\{0\}\cup \{1/n:n=1,2,\ldots\} into a subspace of the plane which is path-connected but not locally path-connected.

拓扑学家的正弦曲线不是局部道路连通的,考虑 (0,1)(0,1) 处引发矛盾。本题的意思是将题设的散点集转化为一个道路连通但非局部道路连通的空间。基于这个结构,我们构造拓扑学家的梳子空间。

{(x,0):0x1}{(1/n,y):0y1,n=1,2,}\{(x,0):0\leq x\leq 1\}\cup \{(1/n,y):0\leq y\leq 1,n=1,2,\ldots\}


[重要] 局部道路连通空间的道路连通分支是开集。

Problem.44. Prove that a space which is connected and locally path-connected is path-connected.

本题要证明连通且局部道路连通的空间是道路连通的。在局部道路连通空间中,每一点都有道路连通邻域,道路连通分支是开集,并且两两不相交。如果 x,yx,y 不在同一个道路连通分支中,那么它们属于不同的道路连通分支。则道路连通分支的并将空间拆解成两个不相交的开集,这与连通性矛盾。


# Chapter 4

需要注意的题目 Problem 1 3 7

# 1-10

[重要] 理解实射影空间的等价定义。

Problem.1. Check that the three descriptions (a),(b),(c) of Pn\mathbb P^n listed in 'Projective spaces' above do all lead to the same space.

实射影空间有三个等价定义。(a) 将 Rn+1\mathbb R^{n+1} 中的 Sn\mathbb S^n 的对径点粘合得到的粘合空间。(b) 将 Rn+1{0}\mathbb R^{n+1}\setminus \{0\} 中的每一条过原点的直线视为一个点得到的粘合空间。(c) 将 Bn\mathbb B^n 的边界对径点粘合得到的粘合空间。

(a) 和 (b) 显然是等价的,因为对径点在同一个方向上,每一条直线也都包含一对对径点,并且粘合规则是相容的;(a) 和 (c) 是等价的,考虑 Sn+1\mathbb S^{n+1}Bn\mathbb B^n 的上半球投影,具体为

(x1,,xn,xn+1)(x1,,xn)(x_1,\ldots,x_n,x_{n+1})\mapsto (x_1,\ldots,x_n)

这是和上半球(带边界)的同胚映射,由球面方程给出。如果 xn+1=0x_{n+1}=0,则映到边界上,正好需要对径点粘合;如果 xn+10x_{n+1}\neq 0,则映到内部点,不需要粘合,每个点唯一对应了一组对径点。


Problem.2. Which space do we obtain if we take a Mobius strip and identify its boundary circle to a point?

只要两次粘合操作在顺序不同的情况下结果(等价关系)一致,那么就可以交换粘合顺序。因此我们先考虑在正方形上粘合 Mobius 带的边界,再反向粘合对边。因为正方形左右两边是反向粘合,上下两面粘合为了一点,所以正方形边界的粘合正好是将边界对径点粘合。这就是实射影平面 P2\mathbb P^2 的定义,因此结果就是 RP2\mathbb {RP}^2


Problem.3. Let f:XYf:X\to Y be an identification map, let AA be a subspace of XX, and give f(A)f(A) the induced topology from YY. Show that the restriction fA:Af(A)f|_A:A\to f(A) need not be an identification map.

粘合映射的定义为连续满射,并且满足 UYU\subseteq Y 是开集当且仅当 f1(U)f^{-1}(U) 是开集。

\\\\


Problem.4. With the terminolopy of Problem 3, show that if AA is open in XX and if ff takes open sets to open sets, or if AA is closed in XX and ff takes closed sets to closed sets, then fA:Af(A)f|_A:A\to f(A) is an identification map.

fAf|_A 是连续满射,如果 ff 是开映射,则 fAf|_A 也是开映射,从而 fA1(U)f|_A^{-1}(U) 是开集当且仅当 UU 是开集。同理,如果 ff 是闭映射,则 fAf|_A 也是闭映射。同理。


Problem.5. Let XX denote the union of the circles [x(1/n)]2+y2=1/n2[x-(1/n)]^2+y^2=1/n^2, for n=1,2,n=1,2,\ldots with the subspace topology from the plane, and let YY denote the identification space obtained from the real line by identifying all the integers to a single point. Show that XX and YY are not homeomorphic. (X is called the Hawaiian earring (夏威夷耳环).)

关键在于收缩点处的拓扑结构。反证法,如果存在同胚,则考虑在收缩点处的任意邻域,取 XX 上关于粘合点的邻域为 (n1/3,n+1/3)\bigcup (n-1/3,n+1/3),取补集后,XX 上有无穷多个连通分支,但 YY 上只有有限个连通分支,矛盾。


Problem.6. Given an example of an identification map which is neither open nor closed.

粘合映射可能不是开映射也不是闭映射。考虑投影映射 p:RRRp:\mathbb R\to\mathbb R\to \mathbb R,对于闭集

[3n,3n+1]×[0,12n]\bigcup[3n,3n+1]\times [0,1-2^{-n}]

对第二分量投影,则 [0,1)[0,1) 不是闭集。同样考虑开集

(0,1+2n)×(n,)\bigcap (0,1+2^{-n})\times (n,\infty)

对第一分量投影,则 (0,1](0,1] 不是开集。


Problem.7. Describe each of the following spaces: (a) the cylinder with each of its boundary circles identified to a point; (b) the torus with the subset consisting of a meridianal and a longitudinal circle identified to a point; (c) S2\mathbb S^2 with the equator identified to a point; (d) R2\mathbb R^2 with each of the circles centre the origin and of integer radius identified to a point.

(a) 是球面 S2\mathbb S^2;(b) 、、、、、、、、、、、、、、、、


Problem.8. Let XX be a compact Hausdorff space. Show that the cone on XX is homeomorphic to the one-point compactification of X×[0,1)X\times [0,1). If AA is closed in XX, show that XAX\setminus A is homeomorphic to the one-point compactification of XAX\setminus A.

# 11-20

# 21-30

# 31-34

# Chapter 5

# 1-10

Problem.1. Let CC denote the unit circle in the plane. Suppose f:CCf:C\to C is a map which is not homotopic to the identity. Prove that f(x)=xf(x)=-x for some point xx of CC.

反证法,如果不存在 xx 使得 f(x)=xf(x)=-x,则定义同伦

H(x,t)=(1t)f(x)+tx(1t)f(x)+txH(x,t)=\frac{(1-t)f(x)+tx}{\|(1-t)f(x)+tx\|}

HHff 和恒等映射之间的同伦,矛盾。容易验证这是良定义的。


Problem.2. With CC as above, show that the map which takes each point of CC to the point diametrically opposite is homotopic to the identity. (We shall see later that the antipodal map of Sn\mathbb S^n is homotopic to the identity if and only if nn is odd.)

定义同伦,则 HHff 和恒等映射之间的同伦。

H(x,t)=eiπtxH(x,t)=e^{i\pi t}x


Problem.3. Let DD be the disc bounded by CC, parametrize DD using polar coordinates, and let h:DDh:D\to D be the homeomorphism defined by h(0)=0,h(r,θ)=(r,θ+2πr)h(0)=0,h(r,\theta)=(r,\theta+2\pi r). Find a homotopy FF from hh to the identity map such that the functions below are all homeomorphisms:

FD×{t}:D×{t}D,0t1F|_{D\times \{t\}}:D\times \{t\}\to D,\quad 0\leq t\leq 1

定义同伦,则 hh 和恒等映射同伦。

H(r,θ,t)=(r,θ+2πr(1t))H(r,\theta,t)=(r,\theta+2\pi r(1-t))

此外,由连续函数复合知道,每一个 HD×{t}H|_{D\times \{t\}} 都是连续双射,逆映射的连续性显然。所以是同胚。


Problem.4. With the terminology of Problem 3. show that hh is homotopic to the identity map relative to CC.

考虑新的同伦映射,使得 hHidrelCh\simeq _H \mathrm{id}\ \mathrm{rel}\ C

H(r,θ,t)=(r,θ+2πr(1t)+2πt)H(r,\theta,t)=(r,\theta+2\pi r(1-t)+2\pi t)


Problem.5. Let f:XSnf:X\to\mathbb S^n be a map which is not onto. Prove that ff is null homotopic (零伦), that is to say ff is homotopic to a map which takes all of XX to a single point of Sn\mathbb S^n.

如果不是满射,则考虑这个没有原像的点,作为球极投影的投影点,那么 f(X)Sn{p}Rnf(X)\subseteq \mathbb S^n\setminus \{p\}\cong \mathbb R^n。而 Rn\mathbb R^n 是可缩空间,因此 ff 是零伦的。


Problem.6. As usual, CYCY denotes the cone on YY. Show that any two maps f,g:XCYf,g:X\to CY are homotopic.

因为锥空间是可缩空间,所以任意两个映射都是零伦的,因此它们是同伦的。


Problem.7. Show that a map from XX to YY is null homotopic if and only if it extends to a map from the cone on XX to YY.

充分性说明存在连续延拓映射,设从 XXYY 的映射为 ff,则

H(x,t):X×IY,H(x,0)=f(x),H(x,1)=cX×{1}H(x,t):X\times I\to Y,\quad H(x,0)=f(x),\quad H(x,1)=c_{X\times \{1\}}

这个连续映射给出同伦,说明 ff 零伦。必要性,如果是零伦的,则可以给出同伦映射,则正好对应锥空间的延拓映射。


Problem.8. Let AA denote the annulus {(r,θ):1r2,0θ2}\{(r,\theta):1\leq r\leq 2,0\leq \theta\leq 2\} in the plane, and let hh be the homeomorphism of AA defined by h(r,θ)=(r,θ+2π(r1))h(r,\theta)=(r,\theta+2\pi (r-1)). Show that hh is homotopic to the identity map. Convince yourself that it is impossible to find a homotopy from hh to the identity which is relative to the two boundary circles of AA. (For a precise solution to this, see Problem 23.)

几何上看,固定角度,h(r,θ0)h(r,\theta_0) 是一条从内圈到外圈的螺旋线,并且整整绕了一圈。如果它与恒等映射关于边界相对同伦。则存在同伦映射

H(r,θ,t):H(r,θ,1)=id,H(r,θ,0)=h(r,θ)H(r,\theta,t):\quad H(r,\theta,1)=\mathrm {id},\quad H(r,\theta,0)=h(r,\theta)

选定 θ=0\theta=0,通过全空间的同胚映射,将螺旋线映为单位圆,则螺旋线同胚于以 11 为基点的单位圆上的一条闭合曲线,绕圈数为 11。而恒等映射经过同胚后是单位圆上绕圈数为 00 的闭合曲线。由同伦映射的性质,绕圈数不变,因此矛盾。


Problem.9. Let α,β,γ\alpha,\beta,\gamma be loops in a space XX, all based at the point pp. Write out formulae for (α.β).γ(\alpha.\beta).\gamma and α.(β.γ)\alpha.(\beta.\gamma), and work out a specific homotopy between these two loops. Make sure that your homotopy is a homotopy rel {0,1}\{0,1\}.

直接写出

(αβ)γ(s)={α(4s),0s14β(4s1),14s12γ(2s1),12s1α(βγ)(s)={α(2s),0s12β(4s2),12s34γ(4s3),34s1\begin{array}{ll}(\alpha\cdot \beta)\cdot \gamma(s)&=\begin{cases}\alpha(4s),&0\leq s\leq \frac{1}{4}\\\beta(4s-1),&\frac{1}{4}\leq s\leq \frac{1}{2}\\\gamma(2s-1),&\frac{1}{2}\leq s\leq 1\end{cases}\\ \\ \alpha\cdot (\beta\cdot \gamma)(s)&=\begin{cases}\alpha(2s),&0\leq s\leq \frac{1}{2}\\\beta(4s-2),&\frac{1}{2}\leq s\leq \frac{3}{4}\\\gamma(4s-3),&\frac{3}{4}\leq s\leq 1\end{cases}\end{array}

同伦映射显式较为复杂,但注意到定义域 [0,1][0,1] 是线段,因此可以直接使用直线同伦,进行参数化,则自然存在保持端点的同伦映射符合要求。


Problem.10. Let γ,σ\gamma,\sigma be two paths in the space XX which begin at the point pp and end at qq. These paths induce isomorphisms γ,σ\gamma_*,\sigma_* of π1(X,p)\pi_1(X,p) with π1(X,q)\pi_1(X,q). Show that σ\sigma_* is the composition of γ\gamma_* and the inner automorphism of π1(X,q)\pi_1(X,q) induced by the element σ1γ\langle \sigma^{-1} \gamma\rangle.

对于任意 απ1(X,p)\langle \alpha\rangle \in \pi_1(X,p),有

σ(α)=σ1ασ=σ1γγαγ1σ1γ1=Innσ1γγ(α)\begin{array}{ll}\sigma_*(\langle \alpha\rangle)&=\langle \sigma^{-1}\cdot \alpha \cdot \sigma\rangle\\ \\&=\langle \sigma^{-1}\gamma\rangle \cdot \langle \gamma\cdot \alpha \cdot \gamma^{-1}\rangle \cdot \langle \sigma^{-1}\gamma\rangle^{-1}\\ \\&=\text{Inn}_{\langle \sigma^{-1}\gamma\rangle}\circ \gamma_*(\langle \alpha\rangle)\end{array}

由任意性,结论成立。

# 11-20

Problem.11. Let XX be a path-connected space. When is it true that for any two points p,qp,q of XX all paths from pp to qq induce the same isomorphism between π1(X,p)\pi_1(X,p) and π1(X,q)\pi_1(X,q)?

逐步分析。沿用 Problem 10 的记号,并有此题可知,任意路径诱导的同构相同当且仅当对于任意两条 ppqq 的路径 γ,σ\gamma,\sigma,都有 Innσ1γ=idπ1(X,q)\text{Inn}_{\langle \sigma^{-1}\gamma\rangle}=\text{id}_{\pi_1(X,q)},即 σ1γZ(π1(X,q))\langle \sigma^{-1}\gamma\rangle\in Z(\pi_1(X,q))。由道路连通性,对任意 qq 回路 α,β\alpha,\beta,都有

α.β=ασ1σβ=σ1σβα=βα\langle \alpha.\beta\rangle =\langle \alpha \sigma^{-1}\sigma\beta\rangle=\langle \sigma^{-1}\sigma\beta\alpha\rangle =\langle \beta\alpha\rangle

所以 π1(X,q)\pi_1(X,q) 是交换群。


Problem.12. Show that any indiscrete space has trivial fundamental group.

固定基点 pXp\in X,对于任意回路 α:IX\alpha:I\to X,定义映射

H:I×IX;{H(s,t)=α(0),0<t1H(s,0)=α(s),t=0H:I\times I\to X;\quad \left\{\begin{array}{ll}H(s,t)=\alpha(0),&0<t\leq 1\\ \\H(s,0)=\alpha(s),&t=0\end{array}\right.

因为 XX 是不可分空间,所以 HH 一定是连续映射,于是 αHeα(0)\alpha\simeq_H e_{\alpha(0)},因此基本群平凡。


Problem.13. Let GG be a path-connected topological group. Given two loops α,β\alpha,\beta based at ee in GG, define a map F:[0,1]×[0,1]GF:[0,1]\times [0,1]\to G by F(s,t)=α(s)β(t)F(s,t)=\alpha(s)\cdot \beta(t), where the dot denotes multiplication in GG. Draw a diagram to show the effect of this map on the square, and prove that the fundamental group of GG is abelian.

[0,1]×[0,1][0,1]\times [0,1] 的底边表示 α(s)\alpha(s) 的参数 ss 变化,侧边表示 β(t)\beta(t) 的参数 tt 变化,则上下两边 F(s,t)=α(s)F(s,t)=\alpha(s) 就是两条 α\alpha 回路,而左右两边 F(s,t)=β(t)F(s,t)=\beta(t) 就是两条 β\beta 回路。

只需要研究 π1(e)\pi_1(e) 中任意两点的乘积交换性,题目已经取出回路 α,β\alpha,\beta,因为 I×II\times I 是凸集,所以从左边到上边到右边连接的道路和下边的道路是同伦的,而连续映射复合保持同伦,这里的连续映射指的是 I×II\times IGG 的映射 FF。因此

β.α.β1α\beta.\alpha.\beta^{-1}\simeq \alpha

所以基本群是交换群。


Problem.14. Let E+3\mathbb E^3_+ denote those points of E3\mathbb E^3 which have nonnegative final coordinate. Show that E+3{(x,y,z):y=0,0z1}\mathbb E^3_+-\{(x,y,z):y=0,0\leq z\leq 1\} has trivial fundamental group.

考虑同伦映射

H(x,y,z,t)=(x(1t),y(1t),(z2)(1t)+2)H(x,y,z,t)=(x(1-t),y(1-t),(z-2)(1-t)+2)

它将 E+3{(x,y,z):y=0,0z1}\mathbb E^3_+-\{(x,y,z):y=0,0\leq z\leq 1\} 收缩到点 (0,0,2)(0,0,2),所以基本群平凡。

# 21-30

[重要] 参考:Allen Hatcher-Algebraic topology Proposition 0.18.

Problem.27. Prove that if f,g:S1Xf,g:\mathbb S^1\to X are homotopic maps,then the spaces formed from XX by attaching a disc using ff and using gg are homotopy equivalent; in other words, XfDXgDX\cup_f D\simeq X\cup _gD.

(1) 由于 f,gf,g 同伦,所以存在同伦映射 H:S1×IXH:\mathbb S^1\times I\to X,满足

H(x,0)=f(x),H(x,1)=g(x)H(x,0)=f(x),\quad H(x,1)=g(x)

XfDX\cup_f DXgDX\cup_g D 放在一个更大的空间 TT 中,然后构造形变收缩,说明它们都同伦等价于 TT,具体而言

T=XH(D×I)T=X\cup_{H} (D\times I)

其中 H\cup _H 表示对任意 (x,t)S1×I(x,t)\in \mathbb S^1\times I 都有等价关系 H(x,t)(x,t)H(x,t)\sim (x,t)

(2) 定义形变收缩映射 F:T×ITF:T\times I\to T(这个映射的原理在后续题目中都需要用到),它保持在圆柱侧面上为恒等映射,将圆柱上表面和内部映到下表面和侧面,并且是连续映射。给出在圆柱上的定义,在 XX 空间上是恒等的:

F((x,s),t)=(x,s)+(x,s2)(x,s2)min{1x,s}F((x,s),t)=(x,s)+\dfrac {(x,s-2)}{\|(x,s-2)\|}\cdot \min\{\|1-x\|,\|s\|\}

简言之,它是圆柱关于 (0,2)(0,2) 点的投影映射。根据定义,它是 X(D×I)X\sqcup (D\times I) 的连续映射。此外,有形变收缩子空间

X(D×I)FX(D×{0}S1×I)X\sqcup(D\times I)\simeq _F X\sqcup(D\times \{0\}\cup \mathbb S^1\times I)

XHS1×I=XX\cup _H\mathbb S^1\times I=X,考虑贴映射后

XH(D×I)FXH(D×{0})=XfDX\cup_H(D\times I)\simeq_F X\cup_H(D\times \{0\})=X\cup _fD

(3) 同理构造投影映射,所以

XgDXH(D×I)X\cup_gD\simeq X\cup_H(D\times I)

根据传递性得证。


Problem.29. Show that the 'house with two rooms' is contractible.

事实上,双室房间同伦等价于图中的整个圆柱,而后者是凸空间,所以是可收缩的。我们说明前半句话。先处理上半部分,通往第一层通道是中空的:它可以通过在中轴线上的高于上表面(即房间 1 通道的入口)的某点诱导的柱面投影,将内部部分形变收缩到柱面上实现。这一步,我们构造了通往第一层的通道。然后以该通道的底面为一个半球(半球朝下,在第一层),将半球内部通过类似的投影,形变收缩到半球面上,这样我们稍微拓展了通往第一层的通道,再在半球内部选取一点作为投影点,通过类似的形变收缩,我们可以构造一号房间。二号房间及其通道可以类似处理。至此我们证明了双室房间同伦于整个圆柱,从而是可收缩的。

# 31-40

Problem.33. Which of the following spaces have the fixed-point property? (a) The 22-sphere; (b) the torus; (c) the interior of the unit disc; (d) the one-point union of two circles.

都不具备不动点性质。(a) 考虑对径点映射 xxx\mapsto -x;(b) 考虑平移,在 S1×S1\mathbb S^1\times \mathbb S^1 上表示为,(x,y)(x+θ,y)(x,y)\mapsto (x+\theta,y),其中 θ\theta 足够小;(c) 考虑向 (1,0)(1,0) 收缩,(x,y)((1+x)/2,y/2)(x,y)\mapsto ((1+x)/2,y/2);(d) 考虑先压缩再旋转,记两圆的连接点为 pp,则定义

f:S1S1S1S1,f(x)={p,xoneS1x,xanotherS1f:\mathbb S^1\vee \mathbb S^1\to \mathbb S^1\vee \mathbb S^1,\quad f(x)=\begin{cases}p, & x\in \text{one } \mathbb S^1\\ x, & x\in \text{another } \mathbb S^1\end{cases}

然后再旋转另一个圆,旋转角度足够小。


Problem.34. Suppose XX and YY are of the same homotopy type and XX has the fixed-point property. Does YY also have it? If XX retracts onto the subspace AA, and AA has the fixed-point property, need XX also have it?

如果 XX 有不动点性质,且 X,YX,Y 同伦等价,那么 YY 事实上不一定有不动点性质。我们知道 [0,1)[0,1) 是凸空间,所以同伦等价于单点空间,后者有不动点性质,但是前者考虑映射 x(x+1)/2x\mapsto (x+1)/2 就没有不动点。这个例子同样可以说明,如果收缩子空间 AA 有不动点性质,整体空间 XX 不一定有不动点性质。

Problem.35. Show that if XX has the fixed-point property, and if XX retracts onto the subspace AA, then AA also has the fixed-point property. Deduce the fixed-point property for the 'house with two rooms' of Problem 29.

如果 XX 有不动点性质,则其收缩子空间 AA 也有不动点性质。设 r:XAr:X\to A 是收缩映射,则

XrAfAXX\xrightarrow{r}A\xrightarrow {f}A\subseteq X

对于任意 f:AAf:A\to A 连续映射,复合映射 fr:XXf\circ r:X\to X 连续,因此存在不动点 xXx\in X,使得 f(r(x))=xf(r(x))=x。这说明 AA 有不动点。回顾 Problem 29,双室空间是圆柱的形变收缩子空间,所以是收缩子空间,而圆柱同胚于 B3\mathbb B^3,因此有不动点性质,所以双室空间也有不动点性质。

# 41-50