[Arm.C5.T26] Consider the following examples of a circle C embedded in a surface S:
S is Mobius strip, C is boundary circle;
S is torus, C is diagonal circle, i.e., {(x,y)∈S1×S1:x=y};
S is cylinder, C is one of boundary circles.
In each case, choose a base point in C, describe generators for the fundamental groups of C and S, and write down in terms of these generators the homomorphism of fundamental groups induced by the inclusion of C in S.
[Arm.C5.T27] Prove that if f,g:S1→X are homotopic maps,then the spaces formed from X by attaching a disc using f and using g are homotopy equivalent; in other words, X∪fD≃X∪gD.
(1) 由于 f,g 同伦,所以存在同伦映射 H:S1×I→X,满足
H(x,0)=f(x),H(x,1)=g(x)
将 X∪fD 和 X∪gD 放在一个更大的空间 T 中,然后构造形变收缩,说明它们都同伦等价于 T,具体而言
T=X∪H(D×I)
其中 ∪H 表示对任意 (x,t)∈S1×I 都有等价关系 H(x,t)∼(x,t)。
(2) 定义形变收缩映射 F:T×I→T(这个映射的原理在后续题目中都需要用到),它保持在圆柱侧面上为恒等映射,将圆柱上表面和内部映到下表面和侧面,并且是连续映射。给出在圆柱上的定义,在 X 空间上是恒等的:
[Arm.C5.T28] Use Problem 27, and the third example of a homotopy given in Section 5.1, to show that the 'dunce hat' has the homotopy type of a disc, and is therefore contractible.
只需要证明小丑帽同伦等价于圆盘。将小丑帽在同胚意义下视为圆盘 D 和 S1 的贴空间。根据小丑帽的定义,三角形三个顶点是粘合在一起的,按照其粘合规则和直线同伦,沿着小丑帽边界一周的道路是同伦于沿 S1 一周的道路的。这两个道路给出了小丑帽的贴映射和圆盘的贴映射,据此小丑帽同伦于圆盘。
[Arm.C5.T29] Show that the 'house with two rooms' is contractible.
[Arm.C5.T33] Which of the following spaces have the fixed-point property? (a) The 2-sphere; (b) the torus; (c) the interior of the unit disc; (d) the one-point union of two circles.
[Arm.C5.T34] Suppose X and Y are of the same homotopy type and X has the fixed-point property. Does Y also have it? If X retracts onto the subspace A, and A has the fixed-point property, need X also have it?
如果 X 有不动点性质,且 X,Y 同伦等价,那么 Y 事实上不一定有不动点性质。我们知道 [0,1) 是凸空间,所以同伦等价于单点空间,后者有不动点性质,但是前者考虑映射 x↦(x+1)/2 就没有不动点。这个例子同样可以说明,如果收缩子空间 A 有不动点性质,整体空间 X 不一定有不动点性质。
[Arm.C5.T35] Show that if X has the fixed-point property, and if X retracts onto the subspace A, then A also has the fixed-point property. Deduce the fixed-point property for the 'house with two rooms' of Problem 29.
如果 X 有不动点性质,则其收缩子空间 A 也有不动点性质。设 r:X→A 是收缩映射,则
XrAfA⊆X
对于任意 f:A→A 连续映射,复合映射 f∘r:X→X 连续,因此存在不动点 x∈X,使得 f(r(x))=x。这说明 A 有不动点。回顾 Problem 29,双室空间是圆柱的形变收缩子空间,所以是收缩子空间,而圆柱同胚于 B3,因此有不动点性质,所以双室空间也有不动点性质。
[Hat.C1.S1.1.T12] Show that every homomorphism of π1(S1)→π1(S1) can be realized as the induced homomorphism φ∗ of a map φ:S1→S1.