# 习题一# 1-5Problem.1. 设 U U U 是 R 3 \mathbb R^3 R 3 的开集,T \mathcal T T 是 U → U U\to U U → U 保持距离的变换,证明:T \mathcal T T 是合同变换.
合同变换是指 R 3 \mathbb R^3 R 3 上保持两点距离的双射,本题需要将 T \mathcal T T 延拓为 R 3 \mathbb R^3 R 3 上的合同变换。记 A , A ′ ∈ U A,A'\in U A , A ′ ∈ U 使得 T ( A ) = A ′ \mathcal T(A)=A' T ( A ) = A ′ ,并且存在开球 B ( A , r ) ⊂ U B(A,r)\subset U B ( A , r ) ⊂ U 。对于任意 C ∈ B ( A , r ) , k ∈ ( 0 , 1 ) C\in B(A,r),k\in(0,1) C ∈ B ( A , r ) , k ∈ ( 0 , 1 ) ,有
d ( A , C ) = d ( T A , T C ) ≤ d ( T A , T ( k C ) ) + d ( T ( k C ) , T C ) = d ( A , k C ) + d ( k C , C ) d(A,C)=d(\mathcal TA,\mathcal TC)\leq d(\mathcal TA,\mathcal T(kC))+d(\mathcal T(kC),\mathcal TC)= d(A,kC)+d(kC,C) d ( A , C ) = d ( T A , T C ) ≤ d ( T A , T ( k C ) ) + d ( T ( k C ) , T C ) = d ( A , k C ) + d ( k C , C )
这说明 T ( k C ) \mathcal T(kC) T ( k C ) 在 T ( A ) , T ( C ) \mathcal T(A),\mathcal T(C) T ( A ) , T ( C ) 连成的线段之间,不难证明 d ( T ( A ) , T ( k C ) ) = k d ( A , C ) d(\mathcal T(A),\mathcal T(kC))=kd(A,C) d ( T ( A ) , T ( k C ) ) = k d ( A , C ) ,而开球 B ( A , r ) B(A,r) B ( A , r ) 中包含了张成 R 3 \mathbb R^3 R 3 的正交基底 r e 1 / 2 , r e 2 / 2 , r e 3 / 2 r\pmb e_1/2,r\pmb e_2/2,r\pmb e_3/2 r e e 1 / 2 , r e e 2 / 2 , r e e 3 / 2 ,不失一般性,设 B ( A , r ) B(A,r) B ( A , r ) 中的点 D , E D,E D , E 满足
A D → = r e 1 2 , A E → = r e 2 2 , D E → = r e 2 − e 1 2 \overrightarrow{AD}=r\dfrac {\pmb e_1}{2},\quad \overrightarrow{AE}=r\dfrac {\pmb e_2}{2},\quad \overrightarrow{DE}=r\dfrac {\pmb e_2-\pmb e_1}{2} A D = r 2 e e 1 , A E = r 2 e e 2 , D E = r 2 e e 2 − e e 1
由于保持长度,所以根据全等三角形,知道 T ( A D → ) , T ( A E → ) \mathcal T(\overrightarrow{AD}),\mathcal T(\overrightarrow{AE}) T ( A D ) , T ( A E ) 也是垂直的,且长度为 r / 2 r/2 r / 2 ,因此我们从 U U U 中选取了一个正交基底,通过 T \mathcal T T 映到另一个正交基底。容易证明 T \mathcal T T 是线性的,所以 T \mathcal T T 对应着一个正交矩阵和平移。从而它延拓成为 R 3 \mathbb R^3 R 3 上的合同变换。
Problem.2. 设 a ( t ) \pmb a(t) a a ( t ) 是向量值函数,证明: (1) ∣ a ∣ = |a|= ∣ a ∣ = 常数当且仅当 ⟨ a ( t ) , a ′ ( t ) ⟩ = 0 \langle \pmb a(t),\pmb a'(t)\rangle =0 ⟨ a a ( t ) , a a ′ ( t ) ⟩ = 0 ; (2) a ( t ) \pmb a(t) a a ( t ) 的方向不变当且仅当 a ( t ) ∧ a ′ ( t ) = 0 \pmb a(t)\wedge \pmb a'(t)=0 a a ( t ) ∧ a a ′ ( t ) = 0 .(需要加上条件 a ( t ) ≠ 0 \pmb a(t)\ne 0 a a ( t ) = 0 。)
(1) 注意到对 a \pmb a a a 的模长平方求导:
d d t ∣ a ∣ 2 = d d t ⟨ a , a ⟩ = 2 ⟨ a , a ′ ⟩ \dfrac {\mathrm d}{\mathrm dt}|\pmb a|^2=\dfrac {\mathrm d}{\mathrm dt}\langle \pmb a,\pmb a\rangle =2\langle \pmb a,\pmb a'\rangle d t d ∣ a a ∣ 2 = d t d ⟨ a a , a a ⟩ = 2 ⟨ a a , a a ′ ⟩
(2) 注意到对 a \pmb a a a 的单位向量求导,由于非零:
d d t ( a ∣ a ∣ ) = a ′ ⟨ a , a ⟩ − a ⟨ a , a ′ ⟩ ∣ a ∣ 3 \dfrac {\mathrm d}{\mathrm dt}\left(\dfrac {\pmb a}{|\pmb a|}\right)=\dfrac {\pmb a'\langle \pmb a,\pmb a\rangle -\pmb a\langle \pmb a,\pmb a'\rangle}{|\pmb a|^3} d t d ( ∣ a a ∣ a a ) = ∣ a a ∣ 3 a a ′ ⟨ a a , a a ⟩ − a a ⟨ a a , a a ′ ⟩
方向不变等价于 a , a ′ \pmb a,\pmb a' a a , a a ′ 共线,等价于 a ∧ a ′ = 0 \pmb a\wedge \pmb a'=0 a a ∧ a a ′ = 0 。
Problem.3. 验证性质 1.1 和性质 1.2,它们是对于 R 3 \mathbb R^3 R 3 中的向量和标量函数:
v 1 ∧ ( v 2 ∧ v 3 ) = ⟨ v 1 , v 3 ⟩ v 2 − ⟨ v 1 , v 2 ⟩ v 3 \pmb v_1\wedge (\pmb v_2\wedge \pmb v_3)=\langle \pmb v_1,\pmb v_3\rangle \pmb v_2 -\langle \pmb v_1,\pmb v_2\rangle \pmb v_3 v v 1 ∧ ( v v 2 ∧ v v 3 ) = ⟨ v v 1 , v v 3 ⟩ v v 2 − ⟨ v v 1 , v v 2 ⟩ v v 3 ;⟨ v 1 ∧ v 2 , v 3 ∧ v 4 ⟩ = ⟨ v 1 , v 3 ⟩ ⟨ v 2 , v 4 ⟩ − ⟨ v 1 , v 4 ⟩ ⟨ v 2 , v 3 ⟩ \langle \pmb v_1\wedge \pmb v_2,\pmb v_3\wedge \pmb v_4\rangle =\langle \pmb v_1,\pmb v_3\rangle \langle \pmb v_2,\pmb v_4\rangle -\langle \pmb v_1,\pmb v_4\rangle \langle \pmb v_2,\pmb v_3\rangle ⟨ v v 1 ∧ v v 2 , v v 3 ∧ v v 4 ⟩ = ⟨ v v 1 , v v 3 ⟩ ⟨ v v 2 , v v 4 ⟩ − ⟨ v v 1 , v v 4 ⟩ ⟨ v v 2 , v v 3 ⟩ ;( v 1 , v 2 , v 3 ) = ( v 2 , v 3 , v 1 ) = ( v 3 , v 1 , v 2 ) (\pmb v_1,\pmb v_2,\pmb v_3)=(\pmb v_2,\pmb v_3,\pmb v_1)=(\pmb v_3,\pmb v_1,\pmb v_2) ( v v 1 , v v 2 , v v 3 ) = ( v v 2 , v v 3 , v v 1 ) = ( v v 3 , v v 1 , v v 2 ) ;∇ ∧ ( ∇ f ) = 0 \nabla \wedge (\nabla f)=0 ∇ ∧ ( ∇ f ) = 0 ;⟨ ∇ , ∇ ∧ F ⟩ = 0 \langle \nabla,\nabla \wedge F\rangle =0 ⟨ ∇ , ∇ ∧ F ⟩ = 0 。(1) 设 v i = v i k e k \pmb v_i=v_i^k\pmb e_k v v i = v i k e e k ,则直接展开等价于
v 1 i v 2 j v 3 k e i ∧ ( e j ∧ e k ) = v 1 i v 2 j v 3 k ( δ i k e j − δ i j e k ) v_1^iv_2^j v_3^k\pmb e_i\wedge (\pmb e_j\wedge \pmb e_k)=v_1^iv_2^j v_3^k(\delta_{ik}\pmb e_j -\delta_{ij}\pmb e_k) v 1 i v 2 j v 3 k e e i ∧ ( e e j ∧ e e k ) = v 1 i v 2 j v 3 k ( δ i k e e j − δ i j e e k )
(2) 利用 (1) (3) 的结论,则
⟨ v 1 ∧ v 2 , v 3 ∧ v 4 ⟩ = ( v 1 ∧ v 2 , v 3 , v 4 ) = ( v 2 , v 3 ∧ v 4 , v 1 ) = ⟨ v 2 , ( v 3 ∧ v 4 ) ∧ v 1 ⟩ \langle \pmb v_1\wedge \pmb v_2,\pmb v_3\wedge \pmb v_4\rangle =(\pmb v_1\wedge \pmb v_2,\pmb v_3,\pmb v_4)=(\pmb v_2,\pmb v_3\wedge \pmb v_4,\pmb v_1)=\langle \pmb v_2,(\pmb v_3\wedge \pmb v_4)\wedge \pmb v_1\rangle ⟨ v v 1 ∧ v v 2 , v v 3 ∧ v v 4 ⟩ = ( v v 1 ∧ v v 2 , v v 3 , v v 4 ) = ( v v 2 , v v 3 ∧ v v 4 , v v 1 ) = ⟨ v v 2 , ( v v 3 ∧ v v 4 ) ∧ v v 1 ⟩
(3) 根据定义展开,而轮换是偶置换,结果是容易验证的
( v 1 , v 2 , v 3 ) = ⟨ v 1 , v 2 ∧ v 3 ⟩ = v 1 i v 2 j v 3 k ⟨ e i , e j ∧ e k ⟩ = v 1 i v 2 j v 3 k ⟨ e j , e k ∧ e i ⟩ (\pmb v_1,\pmb v_2,\pmb v_3)=\langle \pmb v_1,\pmb v_2\wedge \pmb v_3\rangle=v^i_1v_2^jv_3^k\langle \pmb e_i,\pmb e_j\wedge \pmb e_k\rangle=v^i_1v_2^jv_3^k\langle \pmb e_j,\pmb e_k\wedge \pmb e_i\rangle ( v v 1 , v v 2 , v v 3 ) = ⟨ v v 1 , v v 2 ∧ v v 3 ⟩ = v 1 i v 2 j v 3 k ⟨ e e i , e e j ∧ e e k ⟩ = v 1 i v 2 j v 3 k ⟨ e e j , e e k ∧ e e i ⟩
(4) 直接计算,这等价于
∇ ∧ ( f x , f y , f z ) = ( f z y − f y z , f x z − f z x , f y x − f x y ) = 0 \nabla \wedge (f_x,f_y,f_z)=(f_{zy}-f_{yz},f_{xz}-f_{zx},f_{yx}-f_{xy})=0 ∇ ∧ ( f x , f y , f z ) = ( f z y − f y z , f x z − f z x , f y x − f x y ) = 0
(5) 直接计算,这等价于
⟨ ∇ , ( f y − f z , f z − f x , f x − f y ) ⟩ = f y x − f z x + f z y − f x y + f x z − f y z = 0 \langle \nabla,(f_y-f_z,f_z-f_x,f_x-f_y)\rangle =f_{yx}-f_{zx}+f_{zy}-f_{xy}+f_{xz}-f_{yz}=0 ⟨ ∇ , ( f y − f z , f z − f x , f x − f y ) ⟩ = f y x − f z x + f z y − f x y + f x z − f y z = 0
Problem.4. 设 { O ; e 1 , e 2 , e 3 } \{O;\pmb e_1,\pmb e_2,\pmb e_3\} { O ; e e 1 , e e 2 , e e 3 } 是一个正交标架,σ \sigma σ 是 { 1 , 2 , 3 } \{1,2,3\} { 1 , 2 , 3 } 的一个置换,证明:
{ O ; e σ ( 1 ) , e σ ( 2 ) , e σ ( 3 ) } \{O;\pmb e_{\sigma(1)},\pmb e_{\sigma(2)},\pmb e_{\sigma(3)}\} { O ; e e σ ( 1 ) , e e σ ( 2 ) , e e σ ( 3 ) } 是一个正交标架;{ O ; e 1 , e 2 , e 3 } \{O;\pmb e_1,\pmb e_2,\pmb e_3\} { O ; e e 1 , e e 2 , e e 3 } 与 { O ; e σ ( 1 ) , e σ ( 2 ) , e σ ( 3 ) } \{O;\pmb e_{\sigma(1)},\pmb e_{\sigma(2)},\pmb e_{\sigma(3)}\} { O ; e e σ ( 1 ) , e e σ ( 2 ) , e e σ ( 3 ) } 定向相同当且仅当 σ \sigma σ 是偶置换。(1) 置换是双射,显然置换后的基底是两两正交的,并且线性无关,所以是 R 3 \mathbb R^3 R 3 的标架,且由于长度不变,所以是(单位)正交标架。
(2) 只需要验证行列式 ( e 1 , e 2 , e 3 ) / ( e σ ( 1 ) , e σ ( 2 ) , e σ ( 3 ) ) (\pmb e_1,\pmb e_2,\pmb e_3)/(\pmb e_{\sigma(1)},\pmb e_{\sigma(2)},\pmb e_{\sigma(3)}) ( e e 1 , e e 2 , e e 3 ) / ( e e σ ( 1 ) , e e σ ( 2 ) , e e σ ( 3 ) ) 的符号,线性代数的知识知道,这就是列向量的置换,所以符号与置换的奇偶性有对应关系。
Problem.5. 设 T \mathcal T T 是 R 3 \mathbb R^3 R 3 的一个合同变换,v \pmb v v v 和 w \pmb w w w 是 R 3 \mathbb R^3 R 3 的两个向量,求 ( T v ) ∧ ( T w ) (\mathcal T\pmb v)\wedge (\mathcal T\pmb w) ( T v v ) ∧ ( T w w ) 与 T ( v ∧ w ) \mathcal T(\pmb v\wedge \pmb w) T ( v v ∧ w w ) 的关系。
直接展开。因为 T \mathcal T T 是合同变换,所以存在正交矩阵 T \pmb T T T 和平移向量 P \pmb P P P ,使得对于任意 X ∈ R 3 \pmb X\in \mathbb R^3 X X ∈ R 3 ,都有 T X = X T + P \mathcal T\pmb X=\pmb X\pmb T+\pmb P T X X = X X T T + P P 。合同变换作用在向量上(自然诱导的定义),平移向量 P \pmb P P P 在首尾作差中会被消掉,所以设 v = v i e i , w = w i e i \pmb v=v^i\pmb e_i,\pmb w=w^i\pmb e_i v v = v i e e i , w w = w i e e i ,则
( T v ) ∧ ( T w ) = ( v T ) ∧ ( w T ) = ( v i e i T ) ∧ ( w j e j T ) = v i w j ( e i T ) ∧ ( e j T ) (\mathcal T\pmb v)\wedge (\mathcal T\pmb w)=(\pmb v\pmb T)\wedge (\pmb w\pmb T)=(v^i\pmb e_i\pmb T)\wedge (w^j\pmb e_j\pmb T)=v^iw^j(\pmb e_i\pmb T)\wedge (\pmb e_j\pmb T) ( T v v ) ∧ ( T w w ) = ( v v T T ) ∧ ( w w T T ) = ( v i e e i T T ) ∧ ( w j e e j T T ) = v i w j ( e e i T T ) ∧ ( e e j T T )
所以只需要检查基底变化规律。讨论 T \mathcal T T 是正向还是反向合同变换两种情况,综合得到
( T v ) ∧ ( T w ) = ( det T ) v i w j e i ∧ e j = ( det T ) T ( v ∧ w ) (\mathcal T\pmb v)\wedge (\mathcal T\pmb w)=(\det \pmb T)v^iw^j\pmb e_i\wedge \pmb e_j=(\det \pmb T)\mathcal T(\pmb v\wedge \pmb w) ( T v v ) ∧ ( T w w ) = ( det T T ) v i w j e e i ∧ e e j = ( det T T ) T ( v v ∧ w w )
# 习题二Problem 7 9 13 15 17
# 1-10Problem.1. 求下列曲线的弧长与曲率:
y = a x 2 y=ax^2 y = a x 2 ;x 2 a 2 + y 2 b 2 = 1 \dfrac {x^2}{a^2}+\dfrac {y^2}{b^2}=1 a 2 x 2 + b 2 y 2 = 1 ;r ( t ) = ( a cosh t , b sinh t ) \pmb r(t)=(a\cosh t,b\sinh t) r r ( t ) = ( a cosh t , b sinh t ) ;r ( t ) = ( t , a cosh t a ) , a > 0 \pmb r(t)=(t,a\cosh \dfrac ta),a>0 r r ( t ) = ( t , a cosh a t ) , a > 0 .利用 Problem 2 的结论。
(1) 显式曲线,取参数化 r ( x ) = ( x , a x 2 ) \pmb r(x)=(x,ax^2) r r ( x ) = ( x , a x 2 ) ,则
{ s = ∫ 0 x 1 + ( 2 a x ) 2 d x = 1 4 a ( 2 a x 1 + 4 a 2 x 2 + sinh − 1 ( 2 a x ) ) κ = ∣ y ′ ′ ∣ ( 1 + y ′ 2 ) 3 / 2 = 2 a ( 1 + 4 a 2 x 2 ) 3 / 2 \begin{cases}s\displaystyle=\int^x_0\sqrt{1+(2ax)^2}\mathrm dx=\dfrac {1}{4a}\left(2ax\sqrt{1+4a^2x^2}+\sinh^{-1}(2ax)\right)\\ \\ \kappa=\dfrac {|y''|}{(1+y'^2)^{3/2}}=\dfrac {2a}{(1+4a^2x^2)^{3/2}}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ s = ∫ 0 x 1 + ( 2 a x ) 2 d x = 4 a 1 ( 2 a x 1 + 4 a 2 x 2 + sinh − 1 ( 2 a x ) ) κ = ( 1 + y ′ 2 ) 3 / 2 ∣ y ′ ′ ∣ = ( 1 + 4 a 2 x 2 ) 3 / 2 2 a
(2) 隐式曲线,取参数化 ( x , y ) = ( a cos t , b sin t ) , t ∈ [ 0 , 2 π ) (x,y)=(a\cos t,b\sin t),t\in[0,2\pi) ( x , y ) = ( a cos t , b sin t ) , t ∈ [ 0 , 2 π ) ,在 t = 0 t=0 t = 0 点处需要选取其他参数表示。
{ s = ∫ 0 t a 2 sin 2 t + b 2 cos 2 t d t κ = a b ( a 2 sin 2 t + b 2 cos 2 t ) 3 / 2 \begin{cases}s=\displaystyle\int^t_0\sqrt{a^2\sin^2 t +b^2\cos^2 t}\mathrm dt\\ \\ \kappa=\dfrac {ab}{(a^2\sin^2 t +b^2\cos^2 t)^{3/2}}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ s = ∫ 0 t a 2 sin 2 t + b 2 cos 2 t d t κ = ( a 2 sin 2 t + b 2 cos 2 t ) 3 / 2 a b
(3) 参数曲线,直接计算
{ s = ∫ 0 t a 2 sinh 2 t + b 2 cosh 2 t d t κ = − a b ( a 2 sinh 2 t + b 2 cosh 2 t ) 3 / 2 \begin{cases}s=\displaystyle\int^t_0\sqrt{a^2\sinh^2 t +b^2\cosh^2 t}\mathrm dt\\ \\ \kappa=-\dfrac {ab}{(a^2\sinh^2 t +b^2\cosh^2 t)^{3/2}}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ s = ∫ 0 t a 2 sinh 2 t + b 2 cosh 2 t d t κ = − ( a 2 sinh 2 t + b 2 cosh 2 t ) 3 / 2 a b
(4) 参数曲线,直接计算
{ s = ∫ 0 t 1 + sinh 2 t a d t = a sinh t a κ = 1 a cosh 2 t a \begin{cases}s\displaystyle=\int^t_0\sqrt{1+\sinh^2 \dfrac ta}\mathrm dt=a\sinh\dfrac ta\\ \\ \kappa=\dfrac {1}{a\cosh^2 \dfrac ta}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ s = ∫ 0 t 1 + sinh 2 a t d t = a sinh a t κ = a cosh 2 a t 1
Problem.2. 设曲线 r ( t ) = ( x ( t ) , y ( t ) ) \pmb r(t)=(x(t),y(t)) r r ( t ) = ( x ( t ) , y ( t ) ) ,证明:它的曲率为
κ ( t ) = x ′ y ′ ′ − y ′ x ′ ′ ( x ′ 2 + y ′ 2 ) 3 / 2 \kappa(t)=\dfrac {x'y''-y'x''}{(x'^2+y'^2)^{3/2}} κ ( t ) = ( x ′ 2 + y ′ 2 ) 3 / 2 x ′ y ′ ′ − y ′ x ′ ′
直接计算,整理即可
r ˙ ( t ) = ( x ′ t ˙ , y ′ t ˙ ) , r ¨ ( t ) = ( x ′ ′ t ˙ 2 + x ′ t ¨ , y ′ ′ t ˙ 2 + y ′ t ¨ ) , t ¨ = [ ( x ′ 2 + y ′ 2 ) − 1 / 2 ] ′ t ˙ \dot{\pmb r}(t)=(x'\dot t,y'\dot t),\quad \ddot{\pmb r}(t)=(x''\dot t^2 +x'\ddot t,y''\dot t^2 +y'\ddot t),\quad \ddot t=[(x'^2+y'^2)^{-1/2}]'\dot t r r ˙ ( t ) = ( x ′ t ˙ , y ′ t ˙ ) , r r ¨ ( t ) = ( x ′ ′ t ˙ 2 + x ′ t ¨ , y ′ ′ t ˙ 2 + y ′ t ¨ ) , t ¨ = [ ( x ′ 2 + y ′ 2 ) − 1 / 2 ] ′ t ˙
Problem.3. 设曲线 C C C 在极坐标 ( r , θ ) (r,\theta) ( r , θ ) 下的表示为 r = f ( θ ) r=f(\theta) r = f ( θ ) ,证明:曲线 C C C 的曲率表达式为
κ ( θ ) = r 2 + 2 ( r ′ ) 2 − r r ′ ′ ( r 2 + ( r ′ ) 2 ) 3 / 2 \kappa(\theta)=\dfrac {r^2+2(r')^2 -r r''}{(r^2+(r')^2)^{3/2}} κ ( θ ) = ( r 2 + ( r ′ ) 2 ) 3 / 2 r 2 + 2 ( r ′ ) 2 − r r ′ ′
利用 Problem 2 的结论,化成直角坐标形式 ( r , θ ) → ( f ( θ ) cos θ , f ( θ ) sin θ ) (r,\theta)\to (f(\theta)\cos\theta,f(\theta)\sin\theta) ( r , θ ) → ( f ( θ ) cos θ , f ( θ ) sin θ ) ,然后计算即可。
Problem.4. 求下列曲线的曲率和挠率:
r ( t ) = ( a cosh t , a sinh t , b t ) , a > 0 \pmb r(t)=(a\cosh t,a\sinh t,bt),a>0 r r ( t ) = ( a cosh t , a sinh t , b t ) , a > 0 ;r ( t ) = ( 3 t − t 2 , 3 t 2 , 3 t + t 2 ) \pmb r(t)=(3t-t^2,3t^2,3t+t^2) r r ( t ) = ( 3 t − t 2 , 3 t 2 , 3 t + t 2 ) ;r ( t ) = ( a ( 1 − sin t ) , a ( 1 − cos t ) , b t ) , a > 0 \pmb r(t)=(a(1-\sin t),a(1-\cos t),bt),a>0 r r ( t ) = ( a ( 1 − sin t ) , a ( 1 − cos t ) , b t ) , a > 0 ;r ( t ) = ( a t , 2 a ln t , a t ) , a > 0 \pmb r(t)=(at,\sqrt 2a\ln t,\dfrac at),a>0 r r ( t ) = ( a t , 2 a ln t , t a ) , a > 0 .利用 Problem 5 的结论。
(1) 直接计算
{ κ = a b 2 cosh ( 2 t ) + a 2 ( a 2 cosh ( 2 t ) + b 2 ) 3 / 2 τ = b b 2 cosh ( 2 t ) + a 2 \begin{cases}\kappa=\dfrac {a\sqrt {b^2\cosh(2t)+a^2}}{(a^2\cosh (2t)+b^2)^{3/2}}\\ \\ \tau =\dfrac {b}{b^2\cosh(2t)+a^2}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ κ = ( a 2 cosh ( 2 t ) + b 2 ) 3 / 2 a b 2 cosh ( 2 t ) + a 2 τ = b 2 cosh ( 2 t ) + a 2 b
(2) 直接计算
{ κ = 3 11 ( 9 + 22 t 2 ) 3 / 2 τ = 0 \begin{cases}\kappa=\dfrac{3\sqrt {11}}{(9+22t^2)^{3/2}}\\ \\ \tau =0\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ κ = ( 9 + 2 2 t 2 ) 3 / 2 3 1 1 τ = 0
(3) 直接计算
{ κ = a a 2 + b 2 τ = − b a 2 + b 2 \begin{cases}\kappa=\dfrac {a}{a^2+b^2}\\ \\ \tau =-\dfrac b{a^2+b^2}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ κ = a 2 + b 2 a τ = − a 2 + b 2 b
(4) 直接计算
κ = τ = 2 a ⋅ t 2 ( t 2 + 1 ) 2 \kappa=\tau=\dfrac {\sqrt 2}{a}\cdot \dfrac {t^2}{(t^2+1)^2} κ = τ = a 2 ⋅ ( t 2 + 1 ) 2 t 2
Problem.5. 证明:R 3 \mathbb R^3 R 3 的正则曲线 r ( t ) \pmb r(t) r r ( t ) 的曲率和挠率分别为
κ ( t ) = ∣ r ′ ∧ r ′ ′ ∣ ∣ r ′ ∣ 3 , τ ( t ) = ( r ′ , r ′ ′ , r ′ ′ ′ ) ∣ r ′ ∧ r ′ ′ ∣ 2 \kappa(t)=\dfrac {|\pmb r'\wedge \pmb r''|}{|\pmb r'|^3},\quad \tau(t)=\dfrac {(\pmb r', \pmb r'', \pmb r''')}{|\pmb r'\wedge \pmb r''|^2} κ ( t ) = ∣ r r ′ ∣ 3 ∣ r r ′ ∧ r r ′ ′ ∣ , τ ( t ) = ∣ r r ′ ∧ r r ′ ′ ∣ 2 ( r r ′ , r r ′ ′ , r r ′ ′ ′ )
对于曲率:
κ = ∣ r ¨ ∣ = ∣ r ′ ′ t ˙ 2 + r ′ t ¨ ∣ = ∣ r ′ ′ ∣ r ′ ∣ 2 − ⟨ r ′ ′ , r ′ ⟩ r ′ ∣ ∣ r ′ ∣ 4 = ∣ r ′ ∧ ( r ′ ′ ∧ r ′ ) ∣ ∣ r ′ ∣ 4 = ∣ r ′ ∧ r ′ ′ ∣ ∣ r ′ ∣ 3 \kappa=|\ddot{\pmb r}|=|\pmb r''\dot t^2 +\pmb r'\ddot t|=\dfrac {|\pmb r''|\pmb r'|^2 -\langle \pmb r'',\pmb r'\rangle \pmb r'|}{|\pmb r'|^4}=\dfrac {|\pmb r'\wedge(\pmb r''\wedge \pmb r')|}{|\pmb r'|^4}=\dfrac {|\pmb r'\wedge \pmb r''|}{|\pmb r'|^3} κ = ∣ r r ¨ ∣ = ∣ r r ′ ′ t ˙ 2 + r r ′ t ¨ ∣ = ∣ r r ′ ∣ 4 ∣ r r ′ ′ ∣ r r ′ ∣ 2 − ⟨ r r ′ ′ , r r ′ ⟩ r r ′ ∣ = ∣ r r ′ ∣ 4 ∣ r r ′ ∧ ( r r ′ ′ ∧ r r ′ ) ∣ = ∣ r r ′ ∣ 3 ∣ r r ′ ∧ r r ′ ′ ∣
对于挠率:
τ = ( t , n , n ˙ ) = ( r ′ t ˙ , ( r ′ t ˙ ) s κ , ( ( r ′ t ˙ ) s κ ) s ) = t ˙ 6 κ 2 ( r ′ , r ′ ′ , r ′ ′ ′ ) = ( r ′ , r ′ ′ , r ′ ′ ′ ) ∣ r ′ ∧ r ′ ′ ∣ 2 \tau=(\pmb t,\pmb n,\dot{\pmb n})=(\pmb r'\dot { t},\dfrac {(\pmb r'\dot { t})_s}{\kappa},(\dfrac {(\pmb r'\dot { t})_s}{\kappa})_s)=\dfrac {\dot{t}^6}{\kappa ^2}(\pmb r',\pmb r'',\pmb r''')=\dfrac {(\pmb r', \pmb r'', \pmb r''')}{|\pmb r'\wedge \pmb r''|^2} τ = ( t t , n n , n n ˙ ) = ( r r ′ t ˙ , κ ( r r ′ t ˙ ) s , ( κ ( r r ′ t ˙ ) s ) s ) = κ 2 t ˙ 6 ( r r ′ , r r ′ ′ , r r ′ ′ ′ ) = ∣ r r ′ ∧ r r ′ ′ ∣ 2 ( r r ′ , r r ′ ′ , r r ′ ′ ′ )
Problem.6. 证明:曲线
r ( s ) = ( ( 1 + s ) 3 / 2 3 , ( 1 − s ) 3 / 2 3 , s 2 ) , − 1 < s < 1 \pmb r(s)=\left(\dfrac {(1+s)^{3/2}}3,\dfrac {(1-s)^{3/2}}3,\dfrac {s}{\sqrt 2}\right),\quad -1<s<1 r r ( s ) = ( 3 ( 1 + s ) 3 / 2 , 3 ( 1 − s ) 3 / 2 , 2 s ) , − 1 < s < 1
以 s s s 为弧长参数,并求其曲率、挠率和 Frenet 标架。
验证弧长参数,因为
r ′ ( s ) = ( 1 + s 2 , − 1 − s 2 , 1 2 ) \pmb r'(s)=\left(\dfrac {\sqrt{1+s}}{2},-\dfrac {\sqrt{1-s}}{2},\dfrac {1}{\sqrt 2}\right) r r ′ ( s ) = ( 2 1 + s , − 2 1 − s , 2 1 )
求曲率、挠率,应用 Problem 5 的结论
κ = τ = 1 2 2 ( 1 − s 2 ) \kappa=\tau=\dfrac {1}{2\sqrt2(1-s^2)} κ = τ = 2 2 ( 1 − s 2 ) 1
Frenet 标架为
{ t = ( 1 + s 2 , − 1 − s 2 , 1 2 ) n = ( 1 − s 2 , 1 + s 2 , 0 ) b = ( − 1 + s 2 , 1 − s 2 , 1 2 ) \begin{cases}\pmb t=\left(\dfrac {\sqrt{1+s}}{2},-\dfrac {\sqrt{1-s}}{2},\dfrac {1}{\sqrt 2}\right)\\ \\ \pmb n=\left(\dfrac {\sqrt{1-s}}{\sqrt 2},\dfrac {\sqrt{1+s}}{\sqrt 2},0\right)\\ \\ \pmb b=\left(-\dfrac {\sqrt {1+s}}{2},\dfrac {\sqrt {1-s}}{2},\dfrac {1}{\sqrt 2}\right)\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ t t = ( 2 1 + s , − 2 1 − s , 2 1 ) n n = ( 2 1 − s , 2 1 + s , 0 ) b b = ( − 2 1 + s , 2 1 − s , 2 1 )
Problem.7. 设曲线
r ( t ) = { ( e − 1 / t 2 , t , 0 ) , t < 0 ( 0 , 0 , 0 ) , t = 0 ( 0 , t , e − 1 / t 2 ) , t > 0 \pmb r(t)=\begin{cases}(e^{-1/t^2},t,0),& t<0\\ (0,0,0),& t=0\\ (0,t,e^{-1/t^2}),&t>0\end{cases} r r ( t ) = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ ( e − 1 / t 2 , t , 0 ) , ( 0 , 0 , 0 ) , ( 0 , t , e − 1 / t 2 ) , t < 0 t = 0 t > 0
证明:r ( t ) \pmb r(t) r r ( t ) 是一条正则曲线,且在 t = 0 t=0 t = 0 处曲率 κ = 0 \kappa=0 κ = 0 ; 求 r ( t ) \pmb r(t) r r ( t ) 在 t ≠ 0 t\ne 0 t = 0 时的 Frenet 标架,并讨论 t → 0 t\to 0 t → 0 时 Frenet 标架的极限。 (1) 正则性要求验证光滑和切向量场非退化。t ≠ 0 t\neq 0 t = 0 的情况是显然的,只需要考虑 t = 0 t=0 t = 0 处。计算左右极限可知是光滑的,\ \ \ \ \ \ \ \
\ \ \ \ \ \
Problem.8. 设平面正则曲线 C : r = r ( t ) C:\pmb r=\pmb r(t) C : r r = r r ( t ) 不过 P 0 P_0 P 0 点,r ( t 0 ) \pmb r(t_0) r r ( t 0 ) 是 C C C 与 P 0 P_0 P 0 距离最近的点,证明:向量 r ( t 0 ) − P 0 \pmb r(t_0)-P_0 r r ( t 0 ) − P 0 与 r ′ ( t 0 ) \pmb r'(t_0) r r ′ ( t 0 ) 垂直。
考虑距离函数 f ( t ) f(t) f ( t ) ,由于 f ( t ) f(t) f ( t ) 在 t = t 0 t=t_0 t = t 0 处取得极小值,求导即可。
f ( t ) : = ⟨ r ( t ) − P 0 , r ( t ) − P 0 ⟩ f(t):=\langle \pmb r(t)-P_0,\pmb r(t)-P_0\rangle f ( t ) : = ⟨ r r ( t ) − P 0 , r r ( t ) − P 0 ⟩
Problem.9.
设 R 3 \mathbb R^3 R 3 的曲线 C C C 的所有切线过一个定点,证明:C C C 是直线; 证明:所有主法线过定点的曲线是圆。 考虑弧长参数,设这个定点为 P 0 P_0 P 0 ,则由于 r ˙ ( s ) ≠ 0 \dot {\pmb r}(s)\neq 0 r r ˙ ( s ) = 0 ,所以 g g g 是光滑函数,满足
r ( s ) + g ( s ) r ˙ ( s ) = P 0 \pmb r(s)+g(s)\dot{\pmb r}(s)=P_0 r r ( s ) + g ( s ) r r ˙ ( s ) = P 0
求导
r ˙ ( s ) + g ˙ ( s ) r ˙ ( s ) + g ( s ) r ¨ ( s ) = 0 \dot{\pmb r}(s)+\dot g(s)\dot{\pmb r}(s)+g(s)\ddot{\pmb r}(s)=0 r r ˙ ( s ) + g ˙ ( s ) r r ˙ ( s ) + g ( s ) r r ¨ ( s ) = 0
如果 r ¨ ( s ) ≠ 0 \ddot{\pmb r}(s)\neq 0 r r ¨ ( s ) = 0 ,则在开邻域内 g g g 是常值,但导数不为零,矛盾。所以 r ¨ ( s ) = 0 \ddot{\pmb r}(s)=0 r r ¨ ( s ) = 0 ,所以 C C C 是直线。
(2) 同上,设定点为 P 0 P_0 P 0 ,则存在光滑函数 g g g 使得
r ( s ) + g ( s ) n ( s ) = P 0 \pmb r(s)+g(s)\pmb n(s)=P_0 r r ( s ) + g ( s ) n n ( s ) = P 0
求导
t + g ˙ n + g ( − κ t + τ b ) = 0 \pmb t+\dot g\pmb n+g(-\kappa \pmb t+\tau \pmb b)=0 t t + g ˙ n n + g ( − κ t t + τ b b ) = 0
因为主法线存在,由连续性,
、、、、、、、、、、、、、、、、、、、、
Problem.10. 设 T ( X ) = X T + P \mathcal T(X)=X\pmb T+\pmb P T ( X ) = X T T + P P 是 R 3 \mathbb R^3 R 3 的一个合同变换,det T = − 1 \det \pmb T=-1 det T T = − 1 ,r ( t ) \pmb r(t) r r ( t ) 是 R 3 \mathbb R^3 R 3 的正则曲线。求曲线 r ~ = T ∘ r \tilde {\pmb r}=\mathcal T\circ\pmb r r r ~ = T ∘ r r 与曲线 r \pmb r r r 的弧长参数、曲率、挠率间的关系。
r ~ \tilde {\pmb r} r r ~ 的弧长参数和 r \pmb r r r 相同,因为
⟨ r ~ ′ ( t ) , r ~ ′ ( t ) ⟩ = ⟨ r ′ ( t ) T , r ′ ( t ) T ⟩ = ⟨ r ′ ( t ) , r ′ ( t ) ⟩ \langle \tilde {\pmb r}'(t),\tilde {\pmb r}'(t)\rangle =\langle \pmb r'(t)\pmb T,\pmb r'(t)\pmb T\rangle =\langle \pmb r'(t),\pmb r'(t)\rangle ⟨ r r ~ ′ ( t ) , r r ~ ′ ( t ) ⟩ = ⟨ r r ′ ( t ) T T , r r ′ ( t ) T T ⟩ = ⟨ r r ′ ( t ) , r r ′ ( t ) ⟩
结合 Problem 5 的结论,以及合同变换与外积的关系:
∣ r ~ ′ ∧ r ~ ′ ′ ∣ = ∣ ( det T ) ( r ′ ∧ r ′ ′ ) T ∣ = ∣ r ′ ∧ r ′ ′ ∣ |\tilde {\pmb r}'\wedge \tilde {\pmb r}''|=|(\det \pmb T)(\pmb r'\wedge \pmb r'')\pmb T|=|\pmb r'\wedge \pmb r''| ∣ r r ~ ′ ∧ r r ~ ′ ′ ∣ = ∣ ( det T T ) ( r r ′ ∧ r r ′ ′ ) T T ∣ = ∣ r r ′ ∧ r r ′ ′ ∣
所以曲率相同,但挠率变号,因为
( r ~ ′ , r ~ ′ ′ , r ~ ′ ′ ′ ) = ⟨ r ~ ′ , r ~ ′ ′ ∧ r ~ ′ ′ ′ ⟩ = ( det T ) ⟨ r ′ , ( r ′ ′ ∧ r ′ ′ ′ ) T ⟩ = − ( r ′ , r ′ ′ , r ′ ′ ′ ) (\tilde {\pmb r}', \tilde {\pmb r}'', \tilde {\pmb r}''')=\langle \tilde {\pmb r}',\tilde {\pmb r}''\wedge \tilde {\pmb r}'''\rangle =(\det \pmb T)\langle \pmb r',(\pmb r''\wedge \pmb r''')\pmb T\rangle =-(\pmb r', \pmb r'', \pmb r''') ( r r ~ ′ , r r ~ ′ ′ , r r ~ ′ ′ ′ ) = ⟨ r r ~ ′ , r r ~ ′ ′ ∧ r r ~ ′ ′ ′ ⟩ = ( det T T ) ⟨ r r ′ , ( r r ′ ′ ∧ r r ′ ′ ′ ) T T ⟩ = − ( r r ′ , r r ′ ′ , r r ′ ′ ′ )
# 11-20Problem.11. 设弧长参数曲线 r ( s ) \pmb r(s) r r ( s ) 的曲率 κ > 0 \kappa>0 κ > 0 ,挠率 τ > 0 \tau>0 τ > 0 ,b ( s ) \pmb b(s) b b ( s ) 是 C C C 的副法向量,定义曲线 C ~ \tilde C C ~ :
r ~ ( s ) = ∫ 0 s b ( u ) d u \tilde {\pmb r}(s)=\int ^s_0\pmb b(u)\mathrm du r r ~ ( s ) = ∫ 0 s b b ( u ) d u
证明:s s s 是曲线 C ~ \tilde C C ~ 的弧长参数且 κ ~ = τ \tilde \kappa=\tau κ ~ = τ ,τ ~ = κ \tilde \tau =\kappa τ ~ = κ ; 求 C ~ \tilde C C ~ 的 Frenet 标架。 (1) 直接计算。因为 b \pmb b b b 是单位向量,所以是弧长参数。因此使用相同的弧长参数,有
\dot{\tilde {\pmb r}}(s)=\pmb b,\quad \ddot{\tilde {\pmb r}}(s)=-\tau\pmb n,\quad \dddot{\tilde {\pmb r}}(s)=-\dot \tau \pmb n-\tau(-\kappa \pmb t +\tau \pmb b)
取模长和混合积即可得到结论。
(2) Frenet 标架为
t ~ = b , n ~ = − n , b ~ = t \tilde {\pmb t}=\pmb b,\quad \tilde {\pmb n}=-\pmb n,\quad \tilde {\pmb b}=\pmb t t t ~ = b b , n n ~ = − n n , b b ~ = t t
Problem.12. 给定曲线 r ( s ) \pmb r(s) r r ( s ) ,它的曲率和挠率分别是 κ , τ \kappa,\tau κ , τ ;r ( s ) \pmb r(s) r r ( s ) 的单位切向量 t ( s ) \pmb t(s) t t ( s ) 可视作单位球面 S 2 \mathbb S^2 S 2 上的一条曲线,称为曲线 r ( s ) \pmb r(s) r r ( s ) 的切线像。证明:曲线 ~ r ( s ) = t ( s ) \tilde {}\pmb r(s)=\pmb t(s) ~ r r ( s ) = t t ( s ) 的曲率、挠率分别为
κ ~ = κ 2 + τ 2 κ , τ ~ = κ κ 2 + τ 2 d d s ( τ κ ) \tilde \kappa =\dfrac {\sqrt {\kappa^2+\tau^2}}{\kappa},\quad \tilde \tau =\dfrac {\kappa}{\kappa^2+\tau^2}\dfrac {\mathrm d}{\mathrm ds}\left(\dfrac {\tau}{\kappa}\right) κ ~ = κ κ 2 + τ 2 , τ ~ = κ 2 + τ 2 κ d s d ( κ τ )
应用 Problem 5 的结论。显然 s s s 是 r \pmb r r r 的弧长参数,计算
κ ~ = ∣ r ~ ′ ∧ r ~ ′ ′ ∣ ∣ r ~ ′ ∣ 3 = ∣ κ n ∧ ( κ ˙ n + κ ( − κ t + τ b ) ) ∣ κ 3 = κ 2 + τ 2 κ \tilde \kappa=\dfrac {|\tilde {\pmb r}'\wedge \tilde {\pmb r}''|}{|\tilde {\pmb r}'|^3}=\dfrac {|\kappa \pmb n \wedge (\dot \kappa \pmb n +\kappa(-\kappa \pmb t +\tau \pmb b))|}{\kappa^3}=\dfrac {\sqrt {\kappa^2+\tau^2}}{\kappa} κ ~ = ∣ r r ~ ′ ∣ 3 ∣ r r ~ ′ ∧ r r ~ ′ ′ ∣ = κ 3 ∣ κ n n ∧ ( κ ˙ n n + κ ( − κ t t + τ b b ) ) ∣ = κ κ 2 + τ 2
挠率也是同理的,计算
τ ~ = ( r ~ ′ , r ~ ′ ′ , r ~ ′ ′ ′ ) ∣ r ~ ′ ∧ r ~ ′ ′ ∣ 2 = κ 3 ( κ τ ) s − 2 κ 3 τ κ ˙ κ 6 + κ 4 τ 2 = κ κ 2 + τ 2 d d s ( τ κ ) \tilde \tau= \dfrac {(\tilde {\pmb r}', \tilde {\pmb r}'', \tilde {\pmb r}''')}{|\tilde {\pmb r}'\wedge \tilde {\pmb r}''|^2}=\dfrac {\kappa^3(\kappa\tau)_s-2\kappa^3\tau\dot \kappa}{\kappa^6+\kappa^4\tau^2}=\dfrac {\kappa}{\kappa^2+\tau^2}\dfrac {\mathrm d}{\mathrm ds}\left(\dfrac {\tau}{\kappa}\right) τ ~ = ∣ r r ~ ′ ∧ r r ~ ′ ′ ∣ 2 ( r r ~ ′ , r r ~ ′ ′ , r r ~ ′ ′ ′ ) = κ 6 + κ 4 τ 2 κ 3 ( κ τ ) s − 2 κ 3 τ κ ˙ = κ 2 + τ 2 κ d s d ( κ τ )
Problem.13.
求曲率 κ ( s ) = a a 2 + s 2 \kappa(s)=\dfrac a{a^2+s^2} κ ( s ) = a 2 + s 2 a 的平面曲线,其中 s s s 是弧长参数; 求曲率 κ ( s ) = 1 a 2 − s 2 \kappa(s)=\dfrac 1{\sqrt{a^2-s^2}} κ ( s ) = a 2 − s 2 1 的平面曲线,其中 s s s 是弧长参数。 (1) 由平面曲线的基本定理,存在唯一的平面曲线满足该曲率条件,由 Frenet 方程组
Problem.14. 证明:对 R 3 \mathbb R^3 R 3 的弧长参数曲线 r ( s ) \pmb r(s) r r ( s ) ,有
( d r d s , d 2 r d s 2 , d 3 r d s 3 ) = κ 2 τ \left(\dfrac {\mathrm d\pmb r}{\mathrm ds},\dfrac {\mathrm d^2\pmb r}{\mathrm ds^2},\dfrac {\mathrm d^3\pmb r}{\mathrm ds^3}\right)=\kappa^2 \tau ( d s d r r , d s 2 d 2 r r , d s 3 d 3 r r ) = κ 2 τ ;( d t d s , d 2 t d s 2 , d 3 t d s 3 ) = κ 3 ( κ τ ˙ − κ ˙ τ ) = κ 5 d d s ( τ κ ) \left(\dfrac {\mathrm d\pmb t}{\mathrm ds},\dfrac {\mathrm d^2\pmb t}{\mathrm ds^2},\dfrac {\mathrm d^3\pmb t}{\mathrm ds^3}\right)=\kappa^3(\kappa\dot \tau-\dot\kappa\tau)=\kappa^5\dfrac {\mathrm d}{\mathrm ds}\left(\dfrac {\tau}{\kappa}\right) ( d s d t t , d s 2 d 2 t t , d s 3 d 3 t t ) = κ 3 ( κ τ ˙ − κ ˙ τ ) = κ 5 d s d ( κ τ ) .参考 Problem 5 的结论,立刻得到结果。只需要注意到 ∣ r ˙ ∧ r ¨ ∣ = κ |\dot{\pmb r}\wedge \ddot{\pmb r}|=\kappa ∣ r r ˙ ∧ r r ¨ ∣ = κ 以及
(\dot{\pmb t},\ddot{\pmb t},\dddot{\pmb t})=(\kappa \pmb n,\kappa \dot{\pmb n},2\dot\kappa\dot{\pmb n}+\kappa\ddot{\pmb n})=\kappa^3(\pmb n,-\kappa \pmb t +\tau \pmb b,-\dot\kappa\pmb t+\dot\tau\pmb b)
Problem.15. 证明:满足条件的曲线,其中 C C C 是常数
( 1 κ ) 2 + [ 1 τ d d s ( 1 κ ) ] 2 = C 2 \left(\dfrac 1\kappa\right)^2+\left[\dfrac 1\tau\dfrac{\mathrm d}{\mathrm ds}\left(\dfrac 1\kappa\right)\right]^2=C^2 ( κ 1 ) 2 + [ τ 1 d s d ( κ 1 ) ] 2 = C 2
或者是球面曲线,或者 κ \kappa κ 是常数。
Problem.16. 设 P 0 P_0 P 0 是 R 3 \mathbb R^3 R 3 的曲线 C C C 上一点,P P P 是 C C C 上 P 0 P_0 P 0 的邻近点,l l l 是 P 0 P_0 P 0 处的切线;证明:
lim P → P 0 2 d ( P , l ) d 2 ( P , P 0 ) = κ \lim_{P\to P_0}\dfrac {2d(P,l)}{d^2(P,P_0)}=\kappa P → P 0 lim d 2 ( P , P 0 ) 2 d ( P , l ) = κ
这里 d d d 表示 R 3 \mathbb R^3 R 3 的距离。
考虑 Taylor 展开,记 s s s 为弧长参数,s = 0 s=0 s = 0 对应点 P 0 P_0 P 0 ,则
r ( s ) = r ( 0 ) + r ˙ ( 0 ) s + r ¨ ( 0 ) 2 s 2 + o ( s 2 ) \pmb r(s)=\pmb r(0)+\dot{\pmb r}(0)s+\dfrac {\ddot{\pmb r}(0)}{2}s^2 +o(s^2) r r ( s ) = r r ( 0 ) + r r ˙ ( 0 ) s + 2 r r ¨ ( 0 ) s 2 + o ( s 2 )
由于弧长的定义,d ( P 0 , P ) = ∣ r ( s ) − r ( 0 ) ∣ ∼ s d(P_0,P)=|\pmb r(s)-\pmb r(0)|\sim s d ( P 0 , P ) = ∣ r r ( s ) − r r ( 0 ) ∣ ∼ s ,所以在下面式子两侧同除以 s 2 s^2 s 2 就能证明命题
d ( P , l ) = ∣ r ( s ) − r ( 0 ) − ⟨ r ( s ) − r ( 0 ) , t ( 0 ) ⟩ t ( 0 ) ∣ d(P,l)=|\pmb r(s)-\pmb r(0)-\langle \pmb r(s)-\pmb r(0),\pmb t(0)\rangle \pmb t(0)| d ( P , l ) = ∣ r r ( s ) − r r ( 0 ) − ⟨ r r ( s ) − r r ( 0 ) , t t ( 0 ) ⟩ t t ( 0 ) ∣
在证明过程中,利用了一次 L'Hospital 法则。
Problem.17. 求满足 τ = c κ \tau=c\kappa τ = c κ 的曲线,其中 c c c 是常数,κ > 0 \kappa>0 κ > 0 。
Problem.18.
设 r ( t ) \pmb r(t) r r ( t ) 是平面曲线,曲率为 κ ( t ) \kappa(t) κ ( t ) ,求曲线 r ~ = r ( − t ) \tilde {\pmb r}=\pmb r(-t) r r ~ = r r ( − t ) 的曲率; 当 r ( t ) \pmb r(t) r r ( t ) 是 R 3 \mathbb R^3 R 3 的曲线时,求曲线 r ~ = r ( − t ) \tilde {\pmb r}=\pmb r(-t) r r ~ = r r ( − t ) 的曲率和挠率。 在平面情形:
κ ~ = ( x ( − t ) ) ′ ( y ( − t ) ) ′ ′ − ( y ( − t ) ) ′ ( x ( − t ) ) ′ ′ ( ( x ( − t ) ) ′ 2 + ( y ( − t ) ) ′ 2 ) 3 / 2 = − κ \tilde \kappa=\dfrac {(x(-t))'(y(-t))''-(y(-t))'(x(-t))''}{((x(-t))'^2+(y(-t))'^2)^{3/2}}=-\kappa κ ~ = ( ( x ( − t ) ) ′ 2 + ( y ( − t ) ) ′ 2 ) 3 / 2 ( x ( − t ) ) ′ ( y ( − t ) ) ′ ′ − ( y ( − t ) ) ′ ( x ( − t ) ) ′ ′ = − κ
在空间情形:类似地应用结论
κ ~ = κ , τ ~ = τ \tilde \kappa=\kappa,\quad \tilde \tau =\tau κ ~ = κ , τ ~ = τ
Problem.19. 求沿曲线的向量场 v ( s ) \pmb v(s) v v ( s ) ,使其同时满足以下各式:
{ t ˙ ( s ) = v ( s ) ∧ t ( s ) n ˙ ( s ) = v ( s ) ∧ n ( s ) b ˙ ( s ) = v ( s ) ∧ b ( s ) \begin{cases}\dot{\pmb t}(s)=\pmb v(s)\wedge \pmb t(s) \\ \dot{\pmb n}(s)=\pmb v(s)\wedge \pmb n(s)\\ \dot{\pmb b}(s)=\pmb v(s)\wedge \pmb b(s)\end{cases} ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ t t ˙ ( s ) = v v ( s ) ∧ t t ( s ) n n ˙ ( s ) = v v ( s ) ∧ n n ( s ) b b ˙ ( s ) = v v ( s ) ∧ b b ( s )
由 Frenet 标架,设 v ( s ) = α ( s ) t ( s ) + β ( s ) n ( s ) + γ ( s ) b ( s ) \pmb v(s)=\alpha(s)\pmb t(s)+\beta(s)\pmb n(s)+\gamma(s)\pmb b(s) v v ( s ) = α ( s ) t t ( s ) + β ( s ) n n ( s ) + γ ( s ) b b ( s ) ,代入方程组,比较系数可得
α = τ , β = 0 , γ = κ \alpha= \tau,\quad \beta=0,\quad \gamma=\kappa α = τ , β = 0 , γ = κ
Problem.20. 证明:曲线 r ( t ) = ( t + 3 sin t , 2 cos t , 3 t − sin t ) \pmb r(t)=(t+\sqrt 3\sin t,2\cos t,\sqrt 3t-\sin t) r r ( t ) = ( t + 3 sin t , 2 cos t , 3 t − sin t ) 与曲线 r ~ ( t ) = ( 2 cos t 2 , 2 sin t 2 , − t ) \tilde {\pmb r}(t)=(2\cos\dfrac t2,2\sin \dfrac t2,-t) r r ~ ( t ) = ( 2 cos 2 t , 2 sin 2 t , − t ) 是合同的。
由曲线论基本定理,验证两条曲线的曲率和挠率相同即可。直接计算可得
κ = 1 4 , τ = − 1 4 \kappa=\dfrac {1}{4},\quad \tau =-\dfrac 14 κ = 4 1 , τ = − 4 1
# 21-22Problem.21. 证明定理 4.4,即设 κ ( s ) \kappa(s) κ ( s ) 是连续可微函数,则
存在平面曲线 r ( s ) \pmb r(s) r r ( s ) ,它以 s s s 为弧长参数,曲率为 κ ( s ) \kappa(s) κ ( s ) ; 上述曲线在相差平面的一个刚体运动的意义下是唯一的。 (1) 即给定初值问题,其中 κ \kappa κ 是光滑的。
( e 1 ˙ e 2 ˙ ) = ( 0 κ ( s ) − κ ( s ) 0 ) ( e 1 e 2 ) , ( e 1 ( 0 ) e 2 ( 0 ) ) = ( ( 1 , 0 ) ( 0 , 1 ) ) \begin{pmatrix}\dot {\pmb e_1}\\ \\ \dot {\pmb e_2}\end{pmatrix}=\begin{pmatrix}0 & \kappa(s)\\ \\ -\kappa(s) & 0\end{pmatrix}\begin{pmatrix}\pmb e_1\\ \\ \pmb e_2\end{pmatrix},\quad \begin{pmatrix}\pmb e_1(0)\\ \\ \pmb e_2(0)\end{pmatrix}=\begin{pmatrix}(1,0)\\ \\ (0,1)\end{pmatrix} ⎝ ⎛ e e 1 ˙ e e 2 ˙ ⎠ ⎞ = ⎝ ⎛ 0 − κ ( s ) κ ( s ) 0 ⎠ ⎞ ⎝ ⎛ e e 1 e e 2 ⎠ ⎞ , ⎝ ⎛ e e 1 ( 0 ) e e 2 ( 0 ) ⎠ ⎞ = ⎝ ⎛ ( 1 , 0 ) ( 0 , 1 ) ⎠ ⎞
由常微分方程的存在唯一性定理,存在唯一解 e 1 ( s ) , e 2 ( s ) \pmb e_1(s),\pmb e_2(s) e e 1 ( s ) , e e 2 ( s ) ,且 ⟨ e 1 ( s ) , e 2 ( s ) ⟩ = 0 \langle \pmb e_1(s),\pmb e_2(s)\rangle =0 ⟨ e e 1 ( s ) , e e 2 ( s ) ⟩ = 0 ,∣ e 1 ( s ) ∣ = ∣ e 2 ( s ) ∣ = 1 |\pmb e_1(s)|=|\pmb e_2(s)|=1 ∣ e e 1 ( s ) ∣ = ∣ e e 2 ( s ) ∣ = 1 。定义
r ( s ) = ∫ 0 s e 1 ( u ) d u \pmb r(s)=\int^s_0\pmb e_1(u)\mathrm du r r ( s ) = ∫ 0 s e e 1 ( u ) d u
则 r ( s ) \pmb r(s) r r ( s ) 以 s s s 为弧长参数,且曲率为 κ ( s ) \kappa(s) κ ( s ) 。
(2) 设 r ~ ( s ) \tilde {\pmb r}(s) r r ~ ( s ) 也是满足条件的曲线,取 e 1 ~ ( s ) = r ~ ˙ ( s ) , e 2 ~ ( s ) \tilde {\pmb e_1}(s)=\dot{\tilde {\pmb r}}(s),\tilde {\pmb e_2}(s) e e 1 ~ ( s ) = r r ~ ˙ ( s ) , e e 2 ~ ( s ) 为 e 1 ~ ( s ) \tilde {\pmb e_1}(s) e e 1 ~ ( s ) 的法向量,可以将初值及其上的正交标架,通过刚体运动变换为同一个初值正交标架,而由于 κ \kappa κ 在刚体运动下不变,所以只需要对这两个初值标架相同的曲线作差,求解初值问题即可,由解的唯一性保证了曲线的唯一性(在刚体运动意义下)。
Problem.22. 设 C : r = r ( t ) , t ∈ I C:\pmb r=\pmb r(t),t\in I C : r r = r r ( t ) , t ∈ I 是平面曲线,且曲率 κ ( t ) ≠ 0 \kappa(t)\neq 0 κ ( t ) = 0 。定义曲线
C ′ : α ( t ) = r ( t ) + n ( t ) κ ( t ) , ∀ t ∈ I C':\pmb \alpha(t)=\pmb r(t)+\dfrac {\pmb n(t)}{\kappa(t)},\quad \forall t\in I C ′ : α α ( t ) = r r ( t ) + κ ( t ) n n ( t ) , ∀ t ∈ I
它称作曲线 C C C 的渐屈线。
证明:渐屈线的切向量 α ′ ( t ) \pmb \alpha'(t) α α ′ ( t ) 与原曲线的切向量 r ′ ( t ) \pmb r'(t) r r ′ ( t ) 垂直; 设曲线 C C C 上两点 r ( t ) \pmb r(t) r r ( t ) 与 r ( t ′ ) \pmb r(t') r r ( t ′ ) 的法线交于点 α ( t , t ′ ) \pmb \alpha(t,t') α α ( t , t ′ ) ,证明:当 t ′ → t t'\to t t ′ → t 时,α ( t , t ′ ) → α ( t ) \pmb \alpha(t,t')\to \pmb \alpha(t) α α ( t , t ′ ) → α α ( t ) 。 (1) 直接计算,方便起见采用弧长参数过渡。
⟨ α ′ , r ′ ⟩ = ⟨ ( t + n ˙ κ − κ ˙ κ 2 n ) s ′ , r ˙ s ′ ⟩ = ⟨ t + ( − κ t ) κ − κ ˙ κ 2 n , t ⟩ ( s ′ ) 2 = 0 \langle \pmb \alpha',\pmb r'\rangle =\langle \left(\pmb t +\dfrac {\dot{\pmb n}}{\kappa}-\dfrac {\dot \kappa}{\kappa^2}\pmb n\right)s',\dot{\pmb r}s'\rangle=\langle \pmb t +\dfrac {(-\kappa \pmb t)}{\kappa}-\dfrac {\dot \kappa}{\kappa^2}\pmb n,\pmb t\rangle (s')^2=0 ⟨ α α ′ , r r ′ ⟩ = ⟨ ( t t + κ n n ˙ − κ 2 κ ˙ n n ) s ′ , r r ˙ s ′ ⟩ = ⟨ t t + κ ( − κ t t ) − κ 2 κ ˙ n n , t t ⟩ ( s ′ ) 2 = 0
(2) 两个法线的交点是随参数光滑的,因此这里可以设
α ( t , t ′ ) = r ( t ) + g ( t ′ ) n ( t ) = r ( t ′ ) + h ( t ′ ) n ( t ′ ) \alpha(t,t')=\pmb r(t)+g(t')\pmb n(t)=\pmb r(t')+h(t')\pmb n(t') α ( t , t ′ ) = r r ( t ) + g ( t ′ ) n n ( t ) = r r ( t ′ ) + h ( t ′ ) n n ( t ′ )
作差,应用 L'Hospital 法则,不妨设 t t t 是弧长参数,否则换元
lim t ′ → t r ( t ) − r ( t ′ ) t − t ′ = lim t ′ → t h ( t ′ ) n ( t ′ ) − g ( t ′ ) n ( t ) t − t ′ = n ( t ) ( h ′ ( t ) − g ′ ( t ) ) − g ( t ) n ˙ ( t ) \lim_{t'\to t}\dfrac {\pmb r(t)-\pmb r(t')}{t-t'}=\lim_{t'\to t}\dfrac {h(t')\pmb n(t')-g(t')\pmb n(t)}{t-t'}=\pmb n(t)(h'(t)-g'(t))-g(t)\dot{\pmb n}(t) t ′ → t lim t − t ′ r r ( t ) − r r ( t ′ ) = t ′ → t lim t − t ′ h ( t ′ ) n n ( t ′ ) − g ( t ′ ) n n ( t ) = n n ( t ) ( h ′ ( t ) − g ′ ( t ) ) − g ( t ) n n ˙ ( t )
比较系数 g ( t ) = 1 / κ ( t ) g(t)=1/\kappa(t) g ( t ) = 1 / κ ( t ) ,即可得到结论。
# 习题三Problem 12 13 17
# 1-10Problem.1. 求下列曲面的参数表达式:
x 2 a 2 + y 2 b 2 + z 2 c 2 = 1 \dfrac {x^2}{a^2}+\dfrac {y^2}{b^2}+\dfrac {z^2}{c^2}=1 a 2 x 2 + b 2 y 2 + c 2 z 2 = 1 (椭球面);x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \dfrac {x^2}{a^2}+\dfrac {y^2}{b^2}-\dfrac {z^2}{c^2}=1 a 2 x 2 + b 2 y 2 − c 2 z 2 = 1 (单叶双曲面);x 2 a 2 − y 2 b 2 − z 2 c 2 = 1 \dfrac {x^2}{a^2}-\dfrac {y^2}{b^2}-\dfrac {z^2}{c^2}=1 a 2 x 2 − b 2 y 2 − c 2 z 2 = 1 (双叶双曲面);z = x 2 a 2 + y 2 b 2 z=\dfrac {x^2}{a^2}+\dfrac {y^2}{b^2} z = a 2 x 2 + b 2 y 2 (椭圆抛物面);z = y 2 b 2 − x 2 a 2 z=\dfrac {y^2}{b^2}-\dfrac {x^2}{a^2} z = b 2 y 2 − a 2 x 2 (双曲抛物面)。只给出一个局部图。
(1) ( a cos α cos β , b cos α sin β , c sin α ) (a\cos\alpha\cos\beta,b\cos\alpha\sin \beta,c\sin\alpha) ( a cos α cos β , b cos α sin β , c sin α ) ,其中 α ∈ ( − π 2 , π 2 ) , β ∈ ( 0 , 2 π ) \alpha\in(-\dfrac \pi 2,\dfrac \pi 2),\beta\in(0,2\pi) α ∈ ( − 2 π , 2 π ) , β ∈ ( 0 , 2 π ) ;
(2) ( a cosh u cos v , b cosh u sin v , c sinh u ) (a\cosh u\cos v,b\cosh u\sin v,c\sinh u) ( a cosh u cos v , b cosh u sin v , c sinh u ) ,其中 u ∈ R , v ∈ ( 0 , 2 π ) u\in\mathbb R,v\in(0,2\pi) u ∈ R , v ∈ ( 0 , 2 π ) ;
(3) ( a sinh u cos v , b sinh u sin v , c cosh u ) (a\sinh u\cos v,b\sinh u\sin v,c\cosh u) ( a sinh u cos v , b sinh u sin v , c cosh u ) ,其中 u ∈ R , v ∈ ( 0 , 2 π ) u\in\mathbb R,v\in(0,2\pi) u ∈ R , v ∈ ( 0 , 2 π ) ;
(4) ( a z cos θ , b z sin θ , z ) (az\cos\theta,bz\sin \theta,z) ( a z cos θ , b z sin θ , z ) ,其中 z ∈ R , θ ∈ ( 0 , 2 π ) z\in\mathbb R,\theta\in(0,2\pi) z ∈ R , θ ∈ ( 0 , 2 π ) ;
(5) ( a z sinh u , b z cosh u , z ) (az\sinh u,bz\cosh u,z) ( a z sinh u , b z cosh u , z ) ,其中 z ∈ R , u ∈ R z\in\mathbb R,u\in\mathbb R z ∈ R , u ∈ R 。
Problem.2.
r ( u , v ) = ( a ( u + v ) , b ( u − v ) , 4 u v ) \pmb r(u,v)=(a(u+v),b(u-v),4uv) r r ( u , v ) = ( a ( u + v ) , b ( u − v ) , 4 u v ) 是什么曲面?r ( u , v ) = ( a u cosh v , b u sinh v , u 2 ) \pmb r(u,v)=(au\cosh v,bu\sinh v,u^2) r r ( u , v ) = ( a u cosh v , b u sinh v , u 2 ) 是什么曲面?两个都是双曲抛物面,仅以第一问为例
( a ( u + v ) ) 2 a 2 − ( b ( u − v ) ) 2 b 2 = z \dfrac {(a(u+v))^2}{a^2}-\dfrac {(b(u-v))^2}{b^2}=z a 2 ( a ( u + v ) ) 2 − b 2 ( b ( u − v ) ) 2 = z
Problem.3. 求 x y xy x y 平面的曲线 r ( t ) = ( x ( t ) , y ( t ) ) \pmb r(t)=(x(t),y(t)) r r ( t ) = ( x ( t ) , y ( t ) ) ,沿 R 3 \mathbb R^3 R 3 的常方向 a \pmb a a a 平行移动所得的曲面的参数表达式。
直接写出表达式
r ( t , s ) = ( x ( t ) , y ( t ) , 0 ) + s a \pmb r(t,s)=(x(t),y(t),0)+s\pmb a r r ( t , s ) = ( x ( t ) , y ( t ) , 0 ) + s a a
Problem.4. 证明:曲面 F ( y x , z x ) = 0 F(\dfrac yx,\dfrac zx)=0 F ( x y , x z ) = 0 的任意切平面过原点。
这是隐式等值曲面,求梯度算子即可。对于任意 ( x 0 , y 0 , z 0 ) (x_0,y_0,z_0) ( x 0 , y 0 , z 0 ) 在曲面上,有
∇ F = ( F x , F y , F z ) = ( − y 0 x 0 2 F u − z 0 x 0 2 F v , 1 x 0 F u , 1 x 0 F v ) \nabla F=(F_x,F_y,F_z)=\left(-\dfrac {y_0}{x_0^2}F_u-\dfrac {z_0}{x_0^2}F_v,\dfrac {1}{x_0}F_u,\dfrac {1}{x_0}F_v\right) ∇ F = ( F x , F y , F z ) = ( − x 0 2 y 0 F u − x 0 2 z 0 F v , x 0 1 F u , x 0 1 F v )
切平面的方程为
F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0 F_x(x-x_0)+F_y(y-y_0)+F_z(z-z_0)=0 F x ( x − x 0 ) + F y ( y − y 0 ) + F z ( z − z 0 ) = 0
代入上式可知切平面过原点。
Problem.5. 设曲面 S S S 与平面 Π \Pi Π 相交于点 P P P ,且 S S S 位于 Π \Pi Π 的同一侧,证明:Π \Pi Π 是曲面 S S S 在点 P P P 处的切平面。
考虑距离函数即可。对于平面 Π : A x + B y + C z + D = 0 \Pi:Ax+By+Cz+D=0 Π : A x + B y + C z + D = 0 ,定义距离函数
f ( x , y , z ) = A x + B y + C z + D f(x,y,z)=Ax+By+Cz+D f ( x , y , z ) = A x + B y + C z + D
由于 S S S 位于 Π \Pi Π 的同一侧,f f f 在 S S S 上取得极小值,故 ∇ f \nabla f ∇ f 与 S S S 在点 P P P 处的切平面垂直。
Problem.6. 证明:曲面 S S S 在点 P P P 的切平面 T P S T_PS T P S 等于曲面上过点 P P P 的曲线在点 P P P 的切向量全体。
回顾定义,切平面定义为给定参数网后,r u , r v \pmb r_u,\pmb r_v r r u , r r v 所张成的平面,对于切平面的任意切向量,都可以由 r u , r v \pmb r_u,\pmb r_v r r u , r r v 的线性组合表示
v = α r u + β r v \pmb v=\alpha \pmb r_u +\beta \pmb r_v v v = α r r u + β r r v
因此存在曲线 r ( t ) = r ( u ( α t ) , v ( β t ) ) \pmb r(t)=\pmb r(u(\alpha t),v(\beta t)) r r ( t ) = r r ( u ( α t ) , v ( β t ) ) ,其切向量恰好是 v \pmb v v v 。反过来,曲线的切向量显然在切平面内。
Problem.7. 求椭球面的第一基本形式。
椭球面的参数表示为
( a cos α cos β , b cos α sin β , c sin α ) , α ∈ ( − π 2 , π 2 ) , β ∈ ( 0 , 2 π ) (a\cos\alpha\cos\beta,b\cos\alpha\sin \beta,c\sin\alpha),\quad \alpha\in(-\dfrac \pi 2,\dfrac \pi 2),\beta\in(0,2\pi) ( a cos α cos β , b cos α sin β , c sin α ) , α ∈ ( − 2 π , 2 π ) , β ∈ ( 0 , 2 π )
计算得到
{ E = a 2 sin 2 α cos 2 β + b 2 sin 2 α sin 2 β + c 2 cos 2 α F = ( a 2 − b 2 ) sin α cos α sin β cos β G = a 2 cos 2 α sin 2 β + b 2 cos 2 α cos 2 β \begin{cases}E=a^2\sin^2\alpha\cos ^2\beta +b^2\sin^2\alpha\sin^2\beta +c^2\cos^2\alpha\\ F=(a^2-b^2)\sin\alpha\cos\alpha\sin\beta\cos\beta\\ G=a^2\cos^2\alpha\sin^2\beta +b^2\cos^2\alpha\cos^2\beta \end{cases} ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ E = a 2 sin 2 α cos 2 β + b 2 sin 2 α sin 2 β + c 2 cos 2 α F = ( a 2 − b 2 ) sin α cos α sin β cos β G = a 2 cos 2 α sin 2 β + b 2 cos 2 α cos 2 β
Problem.8. 求下列曲面的第一基本形式:
r ( u , v ) = ( u cos v , u sin v , b v ) \pmb r(u,v)=(u\cos v,u\sin v,bv) r r ( u , v ) = ( u cos v , u sin v , b v ) ;r ( u , v ) = ( a ( u + v ) , b ( u − v ) , u 2 + v 2 ) \pmb r(u,v)=(a(u+v),b(u-v),u^2+v^2) r r ( u , v ) = ( a ( u + v ) , b ( u − v ) , u 2 + v 2 ) 。直接计算得到
I 1 = d u 2 + ( u 2 + b 2 ) d v 2 I_1=\mathrm du^2 + (u^2+b^2)\mathrm dv^2 I 1 = d u 2 + ( u 2 + b 2 ) d v 2
I 2 = ( a 2 + b 2 + 4 u 2 ) d u 2 + 2 ( a 2 − b 2 + 4 u v ) d u d v + ( a 2 + b 2 + 4 v 2 ) d v 2 I_2=(a^2+b^2+4u^2)\mathrm du^2 + 2(a^2-b^2+4uv)\mathrm du\mathrm dv +(a^2+b^2+4v^2)\mathrm dv^2 I 2 = ( a 2 + b 2 + 4 u 2 ) d u 2 + 2 ( a 2 − b 2 + 4 u v ) d u d v + ( a 2 + b 2 + 4 v 2 ) d v 2
同时还有第二基本形式
I I 1 = − 2 b b 2 + u 2 d u d v II_1=-\dfrac {2b}{\sqrt {b^2+u^2}}\mathrm du\mathrm dv I I 1 = − b 2 + u 2 2 b d u d v
I I 2 = − a b a 2 b 2 + ( a 2 + b 2 ) ( u 2 + v 2 ) − 2 u v ( a 2 − b 2 ) ( d u 2 + d v 2 ) II_2=\dfrac {-ab}{\sqrt{a^2b^2+(a^2+b^2)(u^2+v^2)-2uv(a^2-b^2)}}\left(\mathrm du^2 +\mathrm dv^2\right) I I 2 = a 2 b 2 + ( a 2 + b 2 ) ( u 2 + v 2 ) − 2 u v ( a 2 − b 2 ) − a b ( d u 2 + d v 2 )
Problem.9. 求曲面 z = f ( x , y ) z=f(x,y) z = f ( x , y ) 的第一基本形式。
取参数化 r ( x , y ) = ( x , y , f ( x , y ) ) \pmb r(x,y)=(x,y,f(x,y)) r r ( x , y ) = ( x , y , f ( x , y ) ) ,计算得到
I = ( 1 + f x 2 ) d x 2 + 2 f x f y d x d y + ( 1 + f y 2 ) d y 2 I=\left(1+f_x^2\right)\mathrm dx^2 +2f_x f_y \mathrm dx\mathrm dy +\left(1+f_y^2\right)\mathrm dy^2 I = ( 1 + f x 2 ) d x 2 + 2 f x f y d x d y + ( 1 + f y 2 ) d y 2
此外计算第二基本形式。
I I = f x x d x 2 + 2 f x y d x d y + f y y d y 2 1 + f x 2 + f y 2 II=\dfrac {f_{xx}\mathrm dx^2 +2f_{xy}\mathrm dx\mathrm dy +f_{yy}\mathrm dy^2}{\sqrt{1+f_x^2+f_y^2}} I I = 1 + f x 2 + f y 2 f x x d x 2 + 2 f x y d x d y + f y y d y 2
Problem.10. 设
F λ ( x , y , z ) = x 2 a − λ + y 2 b − λ + z 2 c − λ = 1 , a > b > c > 0 F_\lambda(x,y,z)=\dfrac {x^2}{a-\lambda}+\dfrac {y^2}{b-\lambda}+\dfrac {z^2}{c-\lambda}=1,\quad a>b>c>0 F λ ( x , y , z ) = a − λ x 2 + b − λ y 2 + c − λ z 2 = 1 , a > b > c > 0
当 λ ∈ ( − ∞ , c ) \lambda\in (-\infty,c) λ ∈ ( − ∞ , c ) 时,F λ ( x , y , z ) = 1 F_\lambda(x,y,z)=1 F λ ( x , y , z ) = 1 给出一族椭球面; 当 λ ∈ ( c , b ) \lambda\in (c,b) λ ∈ ( c , b ) 时,F λ ( x , y , z ) = 1 F_\lambda(x,y,z)=1 F λ ( x , y , z ) = 1 给出一族单叶双曲面; 当 λ ∈ ( b , a ) \lambda\in (b,a) λ ∈ ( b , a ) 时,F λ ( x , y , z ) = 1 F_\lambda(x,y,z)=1 F λ ( x , y , z ) = 1 给出一族双叶双曲面; 证明:对 R 3 \mathbb R^3 R 3 中任意一点 P = ( x , y , z ) , x y z ≠ 0 P=(x,y,z),xyz\neq 0 P = ( x , y , z ) , x y z = 0 ,恰有分别属于这三族曲面的三个二次曲面过点 P P P ,且它们在点 P P P 相互正交。
显然不同取值给出了不同的二次曲面族。当 x , y , z x,y,z x , y , z 给定时,通过连续性,可以证明确实存在唯一的 λ 1 ∈ ( − ∞ , c ) , λ 2 ∈ ( c , b ) , λ 3 ∈ ( b , a ) \lambda_1\in(-\infty,c),\lambda_2\in(c,b),\lambda_3\in(b,a) λ 1 ∈ ( − ∞ , c ) , λ 2 ∈ ( c , b ) , λ 3 ∈ ( b , a ) 使得 F λ i ( x , y , z ) = 1 F_{\lambda_i}(x,y,z)=1 F λ i ( x , y , z ) = 1 。接下来验证正交性,曲面正交的充分必要条件是梯度向量正交,所以
∇ F λ i = ( 2 x a − λ i , 2 y b − λ i , 2 z c − λ i ) \nabla F_{\lambda_i}=\left(\dfrac {2x}{a-\lambda_i},\dfrac {2y}{b-\lambda_i},\dfrac {2z}{c-\lambda_i}\right) ∇ F λ i = ( a − λ i 2 x , b − λ i 2 y , c − λ i 2 z )
计算内积,对于任意两个不同的 λ i , λ j \lambda_i,\lambda_j λ i , λ j ,有
⟨ ∇ F λ i , ∇ F λ j ⟩ = ( 4 x 2 ( a − λ i ) ( a − λ j ) + 4 y 2 ( b − λ i ) ( b − λ j ) + 4 z 2 ( c − λ i ) ( c − λ j ) ) \langle \nabla F_{\lambda_i},\nabla F_{\lambda_j}\rangle =\left(\dfrac {4x^2}{(a-\lambda_i)(a-\lambda_j)}+\dfrac {4y^2}{(b-\lambda_i)(b-\lambda_j)}+\dfrac {4z^2}{(c-\lambda_i)(c-\lambda_j)}\right) ⟨ ∇ F λ i , ∇ F λ j ⟩ = ( ( a − λ i ) ( a − λ j ) 4 x 2 + ( b − λ i ) ( b − λ j ) 4 y 2 + ( c − λ i ) ( c − λ j ) 4 z 2 )
裂项分解后,结果为 0 0 0 。
# 11-20Problem.11. 设 ( x , y ) (x,y) ( x , y ) 是曲面 r ( u , v ) \pmb r(u,v) r r ( u , v ) 的另一组参数,问:r u ∧ r v \pmb r_u\wedge \pmb r_v r r u ∧ r r v 与 r x ∧ r y \pmb r_x\wedge \pmb r_y r r x ∧ r r y 的指向是否相同?
这是相容参数变换。显然指向取决于 Jacobian 的正负,即取决于这个参数变换是否保持定向。
Problem.12. 使 F = ⟨ r u , r v ⟩ = 0 F=\langle \pmb r_u,\pmb r_v\rangle =0 F = ⟨ r r u , r r v ⟩ = 0 的参数 ( u , v ) (u,v) ( u , v ) 称为曲面的正交参数系。给定一个曲面 S S S 以及它的一个参数表示 r = r ( u , v ) \pmb r=\pmb r(u,v) r r = r r ( u , v ) ,证明:对曲面 S S S 上任意一点 P 0 = P ( u 0 , v 0 ) P_0=P(u_0,v_0) P 0 = P ( u 0 , v 0 ) ,存在 P 0 P_0 P 0 的邻域 D D D 以及 D D D 的新参数 ( s , t ) (s,t) ( s , t ) ,使得 ( s , t ) (s,t) ( s , t ) 是曲面 S S S 的正交参数系。
Problem.13. 在曲面 S : r = r ( u , v ) S:\pmb r=\pmb r(u,v) S : r r = r r ( u , v ) 上一点,由方程 P d u d u + 2 Q d u d v + R d v d v = 0 P\mathrm du\mathrm du+2Q\mathrm du\mathrm dv +R\mathrm dv\mathrm dv=0 P d u d u + 2 Q d u d v + R d v d v = 0 确定两个切向。证明:这两个切向相互正交的充要条件是 E R − 2 F Q + G P = 0 ER-2FQ+GP=0 E R − 2 F Q + G P = 0 。
Problem.14. 求习题 8 中曲面的第二基本形式。
参见 Problem 8。
Problem.15. 求曲面 z = f ( x , y ) z=f(x,y) z = f ( x , y ) 的第二基本形式。
参见 Problem 9。
Problem.16. 求曲面 F ( x , y , z ) = 0 F(x,y,z)=0 F ( x , y , z ) = 0 的第二基本形式。
由于法向量可表示为
n = ∇ F ∣ ∇ F ∣ , ∇ F = ( F x , F y , F z ) \pmb n=\dfrac {\nabla F}{|\nabla F|},\quad \nabla F=(F_x,F_y,F_z) n n = ∣ ∇ F ∣ ∇ F , ∇ F = ( F x , F y , F z )
因此切平面的微分表示为 d r = ( d x , d y , d z ) \mathrm d\pmb r=(\mathrm dx,\mathrm dy,\mathrm dz) d r r = ( d x , d y , d z ) 满足
F x d x + F y d y + F z d z = 0 F_x\mathrm dx +F_y\mathrm dy +F_z\mathrm dz=0 F x d x + F y d y + F z d z = 0
则计算第二基本形式
I I = − 1 ∣ ∇ F ∣ ( d x d y d z ) ( F x x F x y F x z F y x F y y F y z F z x F z y F z z ) ( d x d y d z ) II=-\dfrac {1}{|\nabla F|}\begin{pmatrix}\mathrm dx & \mathrm dy & \mathrm dz\end{pmatrix}\begin{pmatrix}F_{xx} & F_{xy} & F_{xz}\\ F_{yx} & F_{yy} & F_{yz}\\ F_{zx} & F_{zy} & F_{zz}\end{pmatrix}\begin{pmatrix}\mathrm dx \\ \mathrm dy \\ \mathrm dz\end{pmatrix} I I = − ∣ ∇ F ∣ 1 ( d x d y d z ) ⎝ ⎛ F x x F y x F z x F x y F y y F z y F x z F y z F z z ⎠ ⎞ ⎝ ⎛ d x d y d z ⎠ ⎞
Problem.17. 证明:在曲面的任意一点,任何两个相互正交的切向的法曲率之和为常数。
记这两个正交切向对应的切向量为
Problem.18. 设曲面 S S S 由方程 x 2 + y 2 − f ( z ) = 0 x^2+y^2-f(z)=0 x 2 + y 2 − f ( z ) = 0 给定,f f f 满足 f ( 0 ) = 0 , f ′ ( 0 ) ≠ 0 f(0)=0,f'(0)\neq 0 f ( 0 ) = 0 , f ′ ( 0 ) = 0 ,证明:S S S 在点 ( 0 , 0 , 0 ) (0,0,0) ( 0 , 0 , 0 ) 的法曲率为常数。
将方程看作 F ( x , y , z ) = 0 F(x,y,z)=0 F ( x , y , z ) = 0 隐式表示的曲面,由隐函数定理,f ′ ( 0 ) ≠ 0 f'(0)\neq 0 f ′ ( 0 ) = 0 ,所以在 ( 0 , 0 ) (0,0) ( 0 , 0 ) 的某个邻域内,z z z 可以表示为 x , y x,y x , y 的函数 z = g ( x , y ) z=g(x,y) z = g ( x , y ) ,因此有局部参数表示
r ( x , y ) = ( x , y , g ( x , y ) ) \pmb r(x,y)=(x,y,g(x,y)) r r ( x , y ) = ( x , y , g ( x , y ) )
计算第一基本形式系数
E = 1 + g x 2 = 1 , F = g x g y = 0 , G = 1 + g y 2 = 1 E=1+g_x^2=1,\quad F=g_x g_y=0,\quad G=1+g_y^2=1 E = 1 + g x 2 = 1 , F = g x g y = 0 , G = 1 + g y 2 = 1
计算第二基本形式系数
L = 2 f ′ ( 0 ) , M = 0 , N = 2 f ′ ( 0 ) L=\dfrac {2}{f'(0)},\quad M=0,\quad N=\dfrac {2}{f'(0)} L = f ′ ( 0 ) 2 , M = 0 , N = f ′ ( 0 ) 2
因此法曲率为
κ n = 2 f ′ ( 0 ) \kappa_n=\dfrac {2}{f'(0)} κ n = f ′ ( 0 ) 2
Problem.19. 定义 I I I = ⟨ d n , d n ⟩ III=\langle \mathrm d\pmb n,\mathrm d\pmb n\rangle I I I = ⟨ d n n , d n n ⟩ 为曲面的第三基本形式。证明:K I − 2 H I I + I I I = 0 KI-2HII+III=0 K I − 2 H I I + I I I = 0 。
应用 Weingarten 映射,只需要验证主曲率方向即可,因为其他方向都是主曲率方向的线性组合。对于脐点,每一个方向都是主曲率方向,对于非脐点,分别讨论两个主方向即可。不妨设是非脐点,则可以选取正交参数网,使得 r u , r v \pmb r_u,\pmb r_v r r u , r r v 分别是主方向的方向向量,记对应的主曲率为 k 1 , k 2 k_1,k_2 k 1 , k 2 。则
K I − 2 H I I + I I I = K ⟨ d r , d r ⟩ + 2 H ⟨ d r , d n ⟩ + ⟨ d n , d n ⟩ KI-2HII+III=K\langle \mathrm d\pmb r,\mathrm d\pmb r\rangle +2H\langle \mathrm d\pmb r,\mathrm d\pmb n\rangle +\langle \mathrm d\pmb n,\mathrm d\pmb n\rangle K I − 2 H I I + I I I = K ⟨ d r r , d r r ⟩ + 2 H ⟨ d r r , d n n ⟩ + ⟨ d n n , d n n ⟩
进一步,代入展开即可
d r = r u d u + r v d v , d n = n u d u + n v d v = − k 1 r u d u − k 2 r v d v \mathrm d\pmb r=\pmb r_u \mathrm du +\pmb r_v \mathrm dv,\quad \mathrm d\pmb n=\pmb n_u \mathrm du +\pmb n_v \mathrm dv =-k_1\pmb r_u \mathrm du -k_2\pmb r_v \mathrm dv d r r = r r u d u + r r v d v , d n n = n n u d u + n n v d v = − k 1 r r u d u − k 2 r r v d v
Problem.20. 设曲面 S 1 S_1 S 1 和 S 2 S_2 S 2 的交线 C C C 的曲率为 κ \kappa κ ,曲线 C C C 在曲面 S i S_i S i 上的法曲率为 k i , i = 1 , 2 k_i,i=1,2 k i , i = 1 , 2 ;若沿 C C C ,S 1 S_1 S 1 和 S 2 S_2 S 2 法向的夹角为 θ \theta θ ,证明:
κ 2 sin 2 θ = k 1 2 + k 2 2 − 2 k 1 k 2 cos θ \kappa^2\sin^2\theta=k_1^2+k^2_2-2k_1k_2\cos\theta κ 2 sin 2 θ = k 1 2 + k 2 2 − 2 k 1 k 2 cos θ
设 S 1 , S 2 S_1,S_2 S 1 , S 2 在 C C C 上某点的单位法向量为 n 1 , n 2 \pmb n_1,\pmb n_2 n n 1 , n n 2 ,则曲线 C C C 在该点的单位切向量 t \pmb t t t 诱导的曲率向量可以表示为
t ˙ = α n 1 + β n 2 \dot{\pmb t}=\alpha\pmb n_1 +\beta \pmb n_2 t t ˙ = α n n 1 + β n n 2
作内积,可以解得
{ − ⟨ t ˙ , n 1 ⟩ = k 1 = α + β cos θ − ⟨ t ˙ , n 2 ⟩ = k 2 = α cos θ + β \begin{cases}-\langle \dot {\pmb t},\pmb n_1\rangle =k_1=\alpha +\beta \cos\theta\\ -\langle \dot {\pmb t},\pmb n_2\rangle =k_2=\alpha \cos\theta +\beta \end{cases} { − ⟨ t t ˙ , n n 1 ⟩ = k 1 = α + β cos θ − ⟨ t t ˙ , n n 2 ⟩ = k 2 = α cos θ + β
则得到表达式,取模长即可
r ¨ = k 1 − k 2 cos θ sin 2 θ n 1 + k 2 − k 1 cos θ sin 2 θ n 2 \ddot{\pmb r}=\dfrac {k_1-k_2\cos\theta}{\sin^2\theta}\pmb n_1 +\dfrac {k_2-k_1\cos\theta}{\sin^2\theta}\pmb n_2 r r ¨ = sin 2 θ k 1 − k 2 cos θ n n 1 + sin 2 θ k 2 − k 1 cos θ n n 2
# 21-30Problem.21. 求下列曲面的 Gauss 曲率和平均曲率:
单叶双曲面 x 2 a 2 + y 2 b 2 − z 2 c 2 = 1 \dfrac {x^2}{a^2}+\dfrac {y^2}{b^2}-\dfrac {z^2}{c^2}=1 a 2 x 2 + b 2 y 2 − c 2 z 2 = 1 ; 环面 ( R + r cos u ) cos v , ( R + r cos u ) sin v , r sin u ) , r < R (R+r\cos u)\cos v,(R+r\cos u)\sin v,r\sin u),\quad r<R ( R + r cos u ) cos v , ( R + r cos u ) sin v , r sin u ) , r < R
\ \
Problem.22.
Problem.23. Problem.25. Problem.27.
Problem.29. 设 r = r ( u , v ) \pmb r=\pmb r(u,v) r r = r r ( u , v ) 是曲面 S S S 的一个参数表示,证明:曲面 S S S 的参数曲线 u , v u,v u , v 是曲率线的充要条件是 F = M = 0 F=M=0 F = M = 0 。
u , v u,v u , v 是曲率线,这等价于 r u , r v \pmb r_u,\pmb r_v r r u , r r v 分别是主方向的方向向量,这推出
F = ⟨ r u , r v ⟩ = 0 , M = − ⟨ n u , r v ⟩ = − ⟨ − k v r v , r u ⟩ = 0 F=\langle \pmb r_u,\pmb r_v\rangle =0,\quad M=-\langle \pmb n_u,\pmb r_v\rangle =-\langle -k_v\pmb r_v,\pmb r_u\rangle =0 F = ⟨ r r u , r r v ⟩ = 0 , M = − ⟨ n n u , r r v ⟩ = − ⟨ − k v r r v , r r u ⟩ = 0
反过来,由对称性,只证明 r u \pmb r_u r r u 是主方向的方向向量。首先 F = 0 F=0 F = 0 说明 r u , r v \pmb r_u,\pmb r_v r r u , r r v ,因此可以正交分解。考虑 Weingarten 映射
W ( r u ) = − n u = L E r u + M G r v = L E r u \mathcal W(\pmb r_u)=-\pmb n_u =\dfrac {L}{E}\pmb r_u +\dfrac {M}{G}\pmb r_v =\dfrac {L}{E}\pmb r_u W ( r r u ) = − n n u = E L r r u + G M r r v = E L r r u
这是特征向量。
Problem.30.
# 31-36Problem.32. Problem.35. Problem.36.
# 习题四2 11
# 1-10Problem.1. 证明:
g α β g α β = 2 g^{\alpha\beta}g_{\alpha\beta}=2 g α β g α β = 2 ;∂ ln g ∂ u α = Γ 1 α 1 + Γ 2 α 2 \dfrac {\partial \ln\sqrt g}{\partial u^\alpha}=\Gamma^1_{1\alpha}+\Gamma^2_{2\alpha} ∂ u α ∂ ln g = Γ 1 α 1 + Γ 2 α 2 。直接展开计算。使用 Christoffel 符号的定义。
Problem.2. 设曲面 S : r ( u 1 , u 2 ) S:\pmb r(u^1,u^2) S : r r ( u 1 , u 2 ) 有参数变换 u α = u α ( u ~ 1 , u ~ 2 ) , α = 1 , 2 u^\alpha=u^\alpha(\tilde {u}^1,\tilde {u}^2),\alpha=1,2 u α = u α ( u ~ 1 , u ~ 2 ) , α = 1 , 2 。记 a i α = ∂ u α ∂ u ~ i a_i^\alpha=\dfrac {\partial u^\alpha}{\partial \tilde {u}^i} a i α = ∂ u ~ i ∂ u α ,a ~ α i = ∂ u ~ i ∂ u α \tilde {a}^i_\alpha=\dfrac {\partial \tilde {u}^i}{\partial u^\alpha} a ~ α i = ∂ u α ∂ u ~ i ,其中 1 ≤ α , i ≤ 2 1\leq \alpha,i\leq 2 1 ≤ α , i ≤ 2 。S S S 在参数 ( u ~ 1 , u ~ 2 ) (\tilde {u}^1,\tilde {u}^2) ( u ~ 1 , u ~ 2 ) 下的第一基本形式系数为 g ~ i j \tilde {g}_{ij} g ~ i j ,第二基本形式系数为 b ~ i j \tilde {b}_{ij} b ~ i j 。证明:
g ~ i j = g α β a i α a j β , b ~ i j = b α β a i α a j β , g α β = g ~ i j a i α a j β \tilde {g}_{ij}=g_{\alpha\beta}a_i^\alpha a_j^\beta,\ \tilde {b}_{ij}=b_{\alpha\beta}a_i^\alpha a_j^\beta,\ g^{\alpha\beta}=\tilde {g}^{ij} {a}^ \alpha_i{a}^\beta_j g ~ i j = g α β a i α a j β , b ~ i j = b α β a i α a j β , g α β = g ~ i j a i α a j β ;Γ ~ i j k = Γ α β γ a i α a j β a ~ γ k + ∂ a i α ∂ u ~ j a ~ α k \tilde {\Gamma}^k_{ij}=\Gamma^\gamma_{\alpha\beta}a_i^\alpha a_j^\beta \tilde {a}^k_\gamma +\dfrac {\partial a^\alpha_i}{\partial \tilde {u}^j}\tilde {a}^k_\alpha Γ ~ i j k = Γ α β γ a i α a j β a ~ γ k + ∂ u ~ j ∂ a i α a ~ α k 。(1) 直接计算。
g ~ i j = ⟨ r i , r j ⟩ = ⟨ r α a i α , r β a j β ⟩ = g α β a i α a j β \tilde {g}_{ij}=\langle \pmb r_i,\pmb r_j\rangle =\langle \pmb r_\alpha a^\alpha_i,\pmb r_\beta a^\beta_j\rangle =g_{\alpha\beta}a_i^\alpha a_j^\beta g ~ i j = ⟨ r r i , r r j ⟩ = ⟨ r r α a i α , r r β a j β ⟩ = g α β a i α a j β
类似地计算 b ~ i j \tilde {b}_{ij} b ~ i j 。对于逆矩阵,由于 g g g 不随参数变化,
、、、、、、、、、、、、、、、、、、、、、、、、、、
Problem.3. 证明:平均曲率 H = 1 2 b α β g α β H=\dfrac 12b_{\alpha\beta}g^{\alpha\beta} H = 2 1 b α β g α β 。
直接计算:
H = 1 2 T r ( ( b α β ) ( g γ θ ) − 1 ) = 1 2 T r ( ( b α β ) ( g γ θ ) ) = 1 2 b α β g α β H=\dfrac 12\mathrm{Tr}((b_{\alpha\beta})(g_{\gamma\theta})^{-1})=\dfrac 12\mathrm{Tr}((b_{\alpha\beta})(g^{\gamma\theta}))=\dfrac12b_{\alpha\beta}g^{\alpha\beta} H = 2 1 T r ( ( b α β ) ( g γ θ ) − 1 ) = 2 1 T r ( ( b α β ) ( g γ θ ) ) = 2 1 b α β g α β
Problem.4. 已知曲面的第一基本形式 I = d r d r + r 2 d s d s I=\mathrm dr\mathrm dr+r^2\mathrm ds\mathrm ds I = d r d r + r 2 d s d s ,求它的 Christoffel 符号。
正交标架,直接应用结论:
Γ 11 1 = Γ 12 1 = Γ 11 2 = Γ 21 1 = Γ 22 2 = 0 , Γ 22 1 = − r , Γ 21 2 = Γ 12 2 = 1 / r \Gamma^1_{11}=\Gamma^1_{12}=\Gamma^2_{11}=\Gamma^1_{21}=\Gamma^2_{22}=0,\quad \Gamma^1_{22}=-r,\quad \Gamma^2_{21}=\Gamma^2_{12}=1/r Γ 1 1 1 = Γ 1 2 1 = Γ 1 1 2 = Γ 2 1 1 = Γ 2 2 2 = 0 , Γ 2 2 1 = − r , Γ 2 1 2 = Γ 1 2 2 = 1 / r
Problem.5. 求曲面 z = f ( x , y ) z=f(x,y) z = f ( x , y ) 的 Christoffel 符号。
取参数化 r ( x , y ) = ( x , y , f ( x , y ) ) \pmb r(x,y)=(x,y,f(x,y)) r r ( x , y ) = ( x , y , f ( x , y ) ) ,计算第一基本形式系数为
E = 1 + f x 2 , F = f x f y , G = 1 + f y 2 E=1+f_x^2,\quad F=f_x f_y,\quad G=1+f_y^2 E = 1 + f x 2 , F = f x f y , G = 1 + f y 2
计算 Christoffel 符号,直接展开计算:
{ Γ 11 1 = f x f x x 1 + f x 2 + f y 2 , Γ 12 1 = f x f x y 1 + f x 2 + f y 2 , Γ 22 1 = f x f y y 1 + f x 2 + f y 2 Γ 11 2 = f y f x x 1 + f x 2 + f y 2 , Γ 12 2 = f y f x y 1 + f x 2 + f y 2 , Γ 22 2 = f y f y y 1 + f x 2 + f y 2 \begin{cases}\Gamma^1_{11}=\dfrac {f_x f_{xx}}{1+f_x^2+f_y^2},\quad \Gamma^1_{12}=\dfrac {f_x f_{xy}}{1+f_x^2+f_y^2},\quad \Gamma^1_{22}=\dfrac {f_x f_{yy}}{1+f_x^2+f_y^2}\\ \\ \Gamma^2_{11}=\dfrac {f_y f_{xx}}{1+f_x^2+f_y^2},\quad \Gamma^2_{12}=\dfrac {f_y f_{xy}}{1+f_x^2+f_y^2},\quad \Gamma^2_{22}=\dfrac {f_y f_{yy}}{1+f_x^2+f_y^2}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ Γ 1 1 1 = 1 + f x 2 + f y 2 f x f x x , Γ 1 2 1 = 1 + f x 2 + f y 2 f x f x y , Γ 2 2 1 = 1 + f x 2 + f y 2 f x f y y Γ 1 1 2 = 1 + f x 2 + f y 2 f y f x x , Γ 1 2 2 = 1 + f x 2 + f y 2 f y f x y , Γ 2 2 2 = 1 + f x 2 + f y 2 f y f y y
Problem.6. 证明:当 ( u , v ) (u,v) ( u , v ) 是曲面的正交曲率线网时,Codazzi 方程可以简化为
L v = H E v , N u = H G u L_v=HE_v,\quad N_u=HG_u L v = H E v , N u = H G u
如果是正交曲率线网,这等价于 F = M = 0 F=M=0 F = M = 0 ,根据正交标架下的 Codazzi 方程,代入即可
{ ( L E ) v − ( M E ) u = N ( E ) v G − M ( G ) u E G ( N G ) u − ( M G ) v = L ( G ) u E − M ( E ) v E G \begin{cases}\left(\dfrac L{\sqrt E}\right)_v-\left(\dfrac M{\sqrt E}\right)_u=N\dfrac{(\sqrt E)_v}{G}-M\dfrac {(\sqrt G)_u}{EG}\\ \\ \left(\dfrac N{\sqrt G}\right)_u-\left(\dfrac M{\sqrt G}\right)_v=L\dfrac {(\sqrt G)_u}{E}-M\dfrac {(\sqrt E)_v}{EG}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ( E L ) v − ( E M ) u = N G ( E ) v − M E G ( G ) u ( G N ) u − ( G M ) v = L E ( G ) u − M E G ( E ) v
Problem.7. 证明:平均曲率为常数的曲面,或是全脐点曲面,或者它的第一、第二基本形式可以表示为
{ I = λ ( u , v ) ( d u d u + d v d v ) , λ > 0 I I = ( 1 + λ H ) d u d u − ( 1 − λ H ) d v d v \begin{cases}I=\lambda (u,v)(\mathrm du\mathrm du+\mathrm dv\mathrm dv),\quad \lambda >0\\ \\ II=(1+\lambda H)\mathrm du\mathrm du-(1-\lambda H)\mathrm dv\mathrm dv\end{cases} ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ I = λ ( u , v ) ( d u d u + d v d v ) , λ > 0 I I = ( 1 + λ H ) d u d u − ( 1 − λ H ) d v d v
如果是全脐点曲面,则命题成立。如果不是全脐点曲面,我们将证明有题设上的形式,而由第一基本形式的正定性可知 λ > 0 \lambda>0 λ > 0 恒成立,因此要么这个时候要么一直满足上述形式,要么是全脐点。即不存在离散脐点。在非脐点,选取正交曲率线网 ( u , v ) (u,v) ( u , v ) ,则此时第一基本形式为
I = E d u d u + G d v d v , E = ∣ r u ∣ 2 , G = ∣ r v ∣ 2 I=E\mathrm du\mathrm du +G\mathrm dv\mathrm dv,\quad E=|\pmb r_u|^2,\quad G=|\pmb r_v|^2 I = E d u d u + G d v d v , E = ∣ r r u ∣ 2 , G = ∣ r r v ∣ 2
第二基本形式为
I I = L d u d u + N d v d v , L = ⟨ r u u , n ⟩ , N = ⟨ r v v , n ⟩ II=L\mathrm du\mathrm du +N\mathrm dv\mathrm dv,\quad L=\langle \pmb r_{uu},\pmb n\rangle,\quad N=\langle \pmb r_{vv},\pmb n\rangle I I = L d u d u + N d v d v , L = ⟨ r r u u , n n ⟩ , N = ⟨ r r v v , n n ⟩
由 Problem 6 可知 Codazzi 方程化简为
L v = H E v , N u = H G u L_v=HE_v,\quad N_u=HG_u L v = H E v , N u = H G u
注意到 H H H 是常数,所以设
f ( u ) = L − H E , − g ( v ) = N − H G f(u)=L-H E,\quad -g(v)=N-H G f ( u ) = L − H E , − g ( v ) = N − H G
代入平均曲率后可以消元
g ( v ) E ( u , v ) = f ( u ) G ( u , v ) g(v)E(u,v)=f(u)G(u,v) g ( v ) E ( u , v ) = f ( u ) G ( u , v )
所以选取参数化 ( u ~ , v ~ ) (\tilde u,\tilde v) ( u ~ , v ~ ) ,使得
u ~ = ∫ 0 u ∣ f ( u ) ∣ d u , v ~ = ∫ 0 v ∣ g ( v ) ∣ d v \tilde u=\int^u_0 \sqrt {|f(u)|}\mathrm du,\quad \tilde v=\int^v_0 \sqrt {|g(v)|}\mathrm dv u ~ = ∫ 0 u ∣ f ( u ) ∣ d u , v ~ = ∫ 0 v ∣ g ( v ) ∣ d v
上述表达式是可逆的,因此 u = u ( u ~ ) , v = v ( v ~ ) u=u(\tilde u),v=v(\tilde v) u = u ( u ~ ) , v = v ( v ~ ) ,则在新参数下题设成立。
Problem.8. 证明:第一、第二基本形式的系数均为常数的曲面是平面或圆柱面。
对于曲面,由于基本形式系数都是常数,所以 Christoffel 符号均为零,因此 Gauss 方程推出 K = 0 K=0 K = 0 。如果存在脐点,则由于系数为常数,必然是全脐点曲面,由于 K = 0 K=0 K = 0 所以是平面。如果不存在脐点,选取正交曲率线网 ( u , v ) (u,v) ( u , v ) ,则由 Problem 7 可知
I = λ ( d u d u + d v d v ) , I I = ( 1 + λ H ) d u d u − ( 1 − λ H ) d v d v I=\lambda (\mathrm du\mathrm du+\mathrm dv\mathrm dv),\quad II=(1+\lambda H)\mathrm du\mathrm du-(1-\lambda H)\mathrm dv\mathrm dv I = λ ( d u d u + d v d v ) , I I = ( 1 + λ H ) d u d u − ( 1 − λ H ) d v d v
其中 λ \lambda λ 是常数。计算
K = L N − M 2 E G − F 2 = ( 1 + λ H ) ( − 1 + λ H ) λ 2 = 0 K=\dfrac {LN-M^2}{EG-F^2}=\dfrac {(1+\lambda H)(-1+\lambda H)}{\lambda^2}=0 K = E G − F 2 L N − M 2 = λ 2 ( 1 + λ H ) ( − 1 + λ H ) = 0
所以解得 λ H = ± 1 \lambda H=\pm 1 λ H = ± 1 ,由于第一基本形式系数推出 λ > 0 \lambda>0 λ > 0 ,因此讨论
(1) 如果 H > 0 H>0 H > 0 ,则 λ H = 1 \lambda H=1 λ H = 1 。此时基本形式为
I = λ ( d u d u + d v d v ) , I I = 2 d u d u I=\lambda (\mathrm du\mathrm du+\mathrm dv\mathrm dv),\quad II=2\mathrm du\mathrm du I = λ ( d u d u + d v d v ) , I I = 2 d u d u
不难构造圆柱面
( a cos k u , a sin k u , a k v ) , − a 3 k 4 = 2 , a 2 k 2 = λ (a\cos ku,a\sin ku,akv),\quad -a^3k^4=2,\quad a^2k^2=\lambda ( a cos k u , a sin k u , a k v ) , − a 3 k 4 = 2 , a 2 k 2 = λ
由曲面结构定理,在刚体变换意义下是唯一的。
(2) 如果 H < 0 H<0 H < 0 。考虑反射刚体变换,化为 H > 0 H>0 H > 0 的情形。
Problem.9. 问是否有曲面,以 φ , ψ \varphi,\psi φ , ψ 为第一、第二基本形式?
φ = d u d u + d v d v , ψ = d u d u − d v d v \varphi=\mathrm du\mathrm du+\mathrm dv\mathrm dv,\ \psi =\mathrm du\mathrm du-\mathrm dv\mathrm dv φ = d u d u + d v d v , ψ = d u d u − d v d v ;φ = d u d u + cos 2 u d v d v , ψ = cos 2 u d u d u + d v d v \varphi=\mathrm du\mathrm du+\cos^2u\mathrm dv\mathrm dv,\ \psi=\cos^2u\mathrm du\mathrm du+\mathrm dv\mathrm dv φ = d u d u + cos 2 u d v d v , ψ = cos 2 u d u d u + d v d v 。通过曲面结构定理验证。特别地,应用正交标架下的 Gauss-Codazzi 方程。
(1) 不符合 Gauss 方程。
(2) 不符合 Codazzi 方程。
Problem.10. 求曲面 F ( x , y , z ) = 0 F(x,y,z)=0 F ( x , y , z ) = 0 的 Gauss 曲率。
求 Gauss 曲率,就是求主曲率之积(可重),而主曲率是法曲率的极值情况(如果在脐点上,各个方向都是极值),所以转化为求解极值问题。首先
n = ∇ F ∥ ∇ F ∥ , ∇ F = ( F x , F y , F z ) \pmb n=\dfrac {\nabla F}{\|\nabla F\|},\quad \nabla F=(F_x,F_y,F_z) n n = ∥ ∇ F ∥ ∇ F , ∇ F = ( F x , F y , F z )
设过曲面上的一点 r ( u , v ) \pmb r(u,v) r r ( u , v ) 的微分(限制在切平面上),则
κ ( d r ) = ⟨ d r , d n ⟩ ⟨ d r , d r ⟩ = d r T d ( ∇ F / ∥ ∇ F ∥ ) d r T d r \kappa(\mathrm d\pmb r)=\dfrac {\langle \mathrm d\pmb r,\mathrm d\pmb n\rangle}{\langle \mathrm d\pmb r,\mathrm d\pmb r\rangle}=\dfrac {\mathrm d\pmb r^T \mathrm d(\nabla F/\|\nabla F\|)}{\mathrm d\pmb r^T \mathrm d\pmb r} κ ( d r r ) = ⟨ d r r , d r r ⟩ ⟨ d r r , d n n ⟩ = d r r T d r r d r r T d ( ∇ F / ∥ ∇ F ∥ )
一方面,我们要求的微分是在切平面上的,所以 ⟨ ∇ F , d r ⟩ = 0 \langle \nabla F,\mathrm d\pmb r\rangle =0 ⟨ ∇ F , d r r ⟩ = 0 ,取外微分
⟨ d ∇ F , d r ⟩ + ⟨ ∇ F , d ( d r ) ⟩ = 0 \langle \mathrm d\nabla F,\mathrm d\pmb r\rangle +\langle \nabla F,\mathrm d(\mathrm d\pmb r)\rangle =0 ⟨ d ∇ F , d r r ⟩ + ⟨ ∇ F , d ( d r r ) ⟩ = 0
第一项是
d ∇ F = ( F x x F x y F x z F y x F y y F y z F z x F z y F z z ) d r : = H d r \mathrm d\nabla F=\begin{pmatrix}F_{xx} & F_{xy} & F_{xz}\\ F_{yx} & F_{yy} & F_{yz}\\ F_{zx} & F_{zy} & F_{zz}\end{pmatrix}\mathrm d\pmb r:=\mathcal H\mathrm d\pmb r d ∇ F = ⎝ ⎛ F x x F y x F z x F x y F y y F z y F x z F y z F z z ⎠ ⎞ d r r : = H d r r
另一方面,构造 Lagrange 函数
L ( d r , λ , μ ) = ⟨ d r , d n ⟩ − λ ( ⟨ d r , d r ⟩ − 1 ) − μ ⟨ ∇ F , d r ⟩ \mathcal L(\mathrm d\pmb r,\lambda,\mu)=\langle \mathrm d\pmb r,\mathrm d\pmb n\rangle -\lambda(\langle \mathrm d\pmb r,\mathrm d\pmb r\rangle -1)-\mu\langle \nabla F,\mathrm d\pmb r\rangle L ( d r r , λ , μ ) = ⟨ d r r , d n n ⟩ − λ ( ⟨ d r r , d r r ⟩ − 1 ) − μ ⟨ ∇ F , d r r ⟩
求偏导
{ ∂ L ∂ d r = 2 d ( ∇ F / ∥ ∇ F ∥ ) − 2 λ d r − μ ∇ F = 0 ∂ L ∂ λ = ⟨ d r , d r ⟩ − 1 = 0 ∂ L ∂ μ = ⟨ ∇ F , d r ⟩ = 0 \begin{cases}\dfrac {\partial \mathcal L}{\partial \mathrm d\pmb r}=2\mathrm d(\nabla F/\|\nabla F\|)-2\lambda \mathrm d\pmb r -\mu \nabla F=0\\ \\ \dfrac {\partial \mathcal L}{\partial \lambda}=\langle \mathrm d\pmb r,\mathrm d\pmb r\rangle -1=0\\ \\ \dfrac {\partial \mathcal L}{\partial \mu}=\langle \nabla F,\mathrm d\pmb r\rangle =0\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ∂ d r r ∂ L = 2 d ( ∇ F / ∥ ∇ F ∥ ) − 2 λ d r r − μ ∇ F = 0 ∂ λ ∂ L = ⟨ d r r , d r r ⟩ − 1 = 0 ∂ μ ∂ L = ⟨ ∇ F , d r r ⟩ = 0
写成矩阵形式,因为 ∥ ∇ F ∥ \|\nabla F\| ∥ ∇ F ∥ 在该点处是常数,所以
( 2 H / ∥ ∇ F ∥ − 2 λ I − ∇ F ( ∇ F ) T 0 ) ( d r μ ) = 0 \begin{pmatrix}2\mathcal H/\|\nabla F\| -2\lambda \pmb I & -\nabla F\\[10pt] (\nabla F)^T & 0\end{pmatrix}\begin{pmatrix}\mathrm d\pmb r\\[10pt] \mu\end{pmatrix}=0 ⎝ ⎛ 2 H / ∥ ∇ F ∥ − 2 λ I I ( ∇ F ) T − ∇ F 0 ⎠ ⎞ ⎝ ⎛ d r r μ ⎠ ⎞ = 0
由于主曲率总是存在,所以上述方程一定有非零解,所以行列式为零,调整后,这等价于
∣ H − λ ∥ ∇ F ∥ I ∇ F ( ∇ F ) T 0 ∣ = 0 \left|\begin{matrix}\mathcal H-\lambda \|\nabla F\|\pmb I & \nabla F\\[10pt] (\nabla F)^T & 0\end{matrix}\right|=0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ H − λ ∥ ∇ F ∥ I I ( ∇ F ) T ∇ F 0 ∣ ∣ ∣ ∣ ∣ ∣ ∣ = 0
这是关于 λ \lambda λ 的二次方程,所以能解出两根 λ 1 , λ 2 \lambda_1,\lambda_2 λ 1 , λ 2 ,当 λ \lambda λ 取它们时,由 Lagrange 方程组可解出 d r \mathrm d\pmb r d r r ,这就是主方向的方向向量,而主曲率即为
κ ( d r ) = 1 2 ( 2 λ d r + μ ∇ F ) T d r = λ \kappa(\mathrm d\pmb r)=\dfrac 12(2\lambda \mathrm d\pmb r+\mu\nabla F)^T\mathrm d\pmb r=\lambda κ ( d r r ) = 2 1 ( 2 λ d r r + μ ∇ F ) T d r r = λ
所以 λ 1 , λ 2 \lambda_1,\lambda_2 λ 1 , λ 2 即为主曲率,Gauss 曲率为 K = λ 1 λ 2 K=\lambda_1\lambda_2 K = λ 1 λ 2 。利用行列式的性质,可以化简为
K = ∣ H ∣ ∥ ∇ F ∥ 4 K=\dfrac {|\mathcal H|}{\|\nabla F\|^4} K = ∥ ∇ F ∥ 4 ∣ H ∣
# 11-20Problem.11. 求曲面,它的第一、第二基本形式分别为
I = ( 1 + u 2 ) d u d u + u 2 d v d v , I I = 1 1 + u 2 ( d u d u + u 2 d v d v ) I=(1+u^2)\mathrm du\mathrm du+u^2\mathrm dv\mathrm dv,\quad II=\dfrac 1{\sqrt {1+u^2}}(\mathrm du\mathrm du+u^2\mathrm dv\mathrm dv) I = ( 1 + u 2 ) d u d u + u 2 d v d v , I I = 1 + u 2 1 ( d u d u + u 2 d v d v )
通过计算,得到标架运动方程
{ d r = 1 + u 2 e 1 d u + u e 2 d v d e 1 = 1 1 + u 2 e 2 d v + 1 1 + u 2 e 3 d u d e 2 = − 1 1 + u 2 e 1 d v + u 1 + u 2 e 3 d v d e 3 = − 1 1 + u 2 e 1 d u − u 1 + u 2 e 2 d v \begin{cases}\mathrm d\pmb r= \sqrt {1+u^2}\pmb e_1\mathrm du + u\pmb e_2\mathrm dv\\ \\ \mathrm d\pmb e_1 =\dfrac 1{\sqrt{1+u^2}}\pmb e_2\mathrm dv +\dfrac 1{1+u^2}\pmb e_3\mathrm du\\ \\ \mathrm d\pmb e_2 =-\dfrac 1{\sqrt{1+u^2}}\pmb e_1\mathrm dv +\dfrac {u}{\sqrt {1+u^2}}\pmb e_3\mathrm dv\\ \\ \mathrm d\pmb e_3=-\dfrac 1{1+u^2}\pmb e_1\mathrm du -\dfrac {u}{\sqrt {1+u^2}}\pmb e_2\mathrm dv\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ d r r = 1 + u 2 e e 1 d u + u e e 2 d v d e e 1 = 1 + u 2 1 e e 2 d v + 1 + u 2 1 e e 3 d u d e e 2 = − 1 + u 2 1 e e 1 d v + 1 + u 2 u e e 3 d v d e e 3 = − 1 + u 2 1 e e 1 d u − 1 + u 2 u e e 2 d v
所以先限制在 d u \mathrm du d u 上,进行积分:
{ d e 1 d u = 1 1 + u 2 e 3 d e 2 d u = 0 d e 3 d u = − 1 1 + u 2 e 1 \begin{cases}\dfrac {\mathrm d\pmb e_1}{\mathrm du}=\dfrac 1{1+u^2}\pmb e_3\\ \\ \dfrac {\mathrm d\pmb e_2}{\mathrm du}=0\\ \\ \dfrac {\mathrm d\pmb e_3}{\mathrm du}=-\dfrac 1{1+u^2}\pmb e_1\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ d u d e e 1 = 1 + u 2 1 e e 3 d u d e e 2 = 0 d u d e e 3 = − 1 + u 2 1 e e 1
则显然,随着 u u u 的变化,e 1 , e 3 \pmb e_1,\pmb e_3 e e 1 , e e 3 在一个平面内旋转,而 e 2 \pmb e_2 e e 2 保持不变。给定初值
e 1 ( 0 , 0 ) = ( 1 , 0 , 0 ) , e 2 ( 0 , 0 ) = ( 0 , 1 , 0 ) , e 3 ( 0 , 0 ) = ( 0 , 0 , 1 ) \pmb e_1(0,0)=(1,0,0),\quad \pmb e_2(0,0)=(0,1,0),\quad \pmb e_3(0,0)=(0,0,1) e e 1 ( 0 , 0 ) = ( 1 , 0 , 0 ) , e e 2 ( 0 , 0 ) = ( 0 , 1 , 0 ) , e e 3 ( 0 , 0 ) = ( 0 , 0 , 1 )
解得
{ e 1 ( u , 0 ) = ( cos ( arctan u ) , 0 , sin ( arctan u ) ) e 2 ( u , 0 ) = ( 0 , 1 , 0 ) e 3 ( u , 0 ) = ( − sin ( arctan u ) , 0 , cos ( arctan u ) ) \begin{cases}\pmb e_1(u,0)=(\cos(\arctan u),0,\sin(\arctan u))\\ \\ \pmb e_2(u,0)=(0,1,0)\\ \\ \pmb e_3(u,0)=(-\sin(\arctan u),0,\cos(\arctan u))\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ e e 1 ( u , 0 ) = ( cos ( arctan u ) , 0 , sin ( arctan u ) ) e e 2 ( u , 0 ) = ( 0 , 1 , 0 ) e e 3 ( u , 0 ) = ( − sin ( arctan u ) , 0 , cos ( arctan u ) )
接下来限制在 d v \mathrm dv d v 上,进行积分,此时固定 u u u :
{ d e 1 d v = 1 1 + u 2 e 2 d e 2 d v = − 1 1 + u 2 e 1 + u 1 + u 2 e 3 d e 3 d v = − u 1 + u 2 e 2 \begin{cases}\dfrac {\mathrm d\pmb e_1}{\mathrm dv}=\dfrac 1{\sqrt{1+u^2}}\pmb e_2\\ \\ \dfrac {\mathrm d\pmb e_2}{\mathrm dv}=-\dfrac 1{\sqrt{1+u^2}}\pmb e_1+\dfrac u{\sqrt {1+u^2}}\pmb e_3\\ \\ \dfrac {\mathrm d\pmb e_3}{\mathrm dv}=- \dfrac {u}{\sqrt {1+u^2}}\pmb e_2\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ d v d e e 1 = 1 + u 2 1 e e 2 d v d e e 2 = − 1 + u 2 1 e e 1 + 1 + u 2 u e e 3 d v d e e 3 = − 1 + u 2 u e e 2
解得\ \ \ \ \ \
Problem.12. 已知两个微分式
φ = E d u d u + G d v d v ( E , G > 0 ) , ψ = λ ( u , v ) φ \varphi=E\mathrm du\mathrm du+G\mathrm dv\mathrm dv\ (E,G>0),\quad \psi=\lambda(u,v)\varphi φ = E d u d u + G d v d v ( E , G > 0 ) , ψ = λ ( u , v ) φ
E , G , λ E,G,\lambda E , G , λ 满足什么条件时,φ , ψ \varphi,\psi φ , ψ 可以作为曲面的第一、第二基本形式?E = G E=G E = G 时,求解 E , G E,G E , G 和 λ \lambda λ 。(1) 这是全脐点曲面,所以只能是平面或球。对正交曲率线网,应用 Gauss-Codazzi 方程,即
λ 2 = − 1 E G [ ( ( E ) v G ) v + ( ( G ) u E ) u ] \lambda^2=-\dfrac 1{\sqrt {EG}}\left[\left(\dfrac {(\sqrt {E})_v}{G}\right)_v+\left(\dfrac {(\sqrt {G})_u}{E}\right)_u\right] λ 2 = − E G 1 [ ( G ( E ) v ) v + ( E ( G ) u ) u ]
而全脐点曲面的平均曲率是常数,容易计算得到 λ = H \lambda=H λ = H ,所以 Codazzi 方程自动满足。
L v = H E v , N u = H G u L_v=HE_v,\quad N_u=HG_u L v = H E v , N u = H G u
(2) 取 f = E = G f=\sqrt E=\sqrt G f = E = G ,则 λ 2 f 2 + Δ ln f = 0 \lambda^2f^2+\Delta\ln f=0 λ 2 f 2 + Δ ln f = 0 。
Problem.13. 在旋转曲面 r ( u , v ) = ( u cos v , u sin v , f ( u ) ) \pmb r(u,v)=(u\cos v,u\sin v,f(u)) r r ( u , v ) = ( u cos v , u sin v , f ( u ) ) 上建立正交标架场 { e 1 , e 2 } \{\pmb e_1,\pmb e_2\} { e e 1 , e e 2 } 并求相应的微分形式 { ω 1 , ω 2 , ω 12 , ω 13 , ω 23 } \{\omega_1,\omega_2,\omega_{12},\omega_{13},\omega_{23}\} { ω 1 , ω 2 , ω 1 2 , ω 1 3 , ω 2 3 } 。
注意到 u , v u,v u , v 是正交参数,所以取正交标架场为
e 1 = r u ∣ r u ∣ = 1 1 + f ′ 2 ( cos v , sin v , f ′ ) , e 2 = r v ∣ r v ∣ = ( − sin v , cos v , 0 ) \pmb e_1=\dfrac {\pmb r_u}{|\pmb r_u|}=\dfrac {1}{\sqrt {1+f'^2}}(\cos v,\sin v,f'),\quad \pmb e_2=\dfrac {\pmb r_v}{|\pmb r_v|}=(-\sin v,\cos v,0) e e 1 = ∣ r r u ∣ r r u = 1 + f ′ 2 1 ( cos v , sin v , f ′ ) , e e 2 = ∣ r r v ∣ r r v = ( − sin v , cos v , 0 )
直接计算微分形式
ω 1 = 1 + f ′ 2 d u , ω 2 = u d v \omega_1=\sqrt {1+f'^2}\mathrm du,\quad \omega_2=u\mathrm dv ω 1 = 1 + f ′ 2 d u , ω 2 = u d v
ω 12 = 1 1 + f ′ 2 d v , ω 13 = f ′ f ′ ′ 1 + f ′ 2 d u , ω 23 = f ′ 1 + f ′ 2 d v \omega_{12}=\dfrac {1}{\sqrt {1+f'^2}}\mathrm dv,\quad \omega_{13}=\dfrac {f'f''}{1+f'^2}\mathrm du,\quad \omega_{23}=\dfrac {f'}{\sqrt {1+f'^2}}\mathrm dv ω 1 2 = 1 + f ′ 2 1 d v , ω 1 3 = 1 + f ′ 2 f ′ f ′ ′ d u , ω 2 3 = 1 + f ′ 2 f ′ d v
Problem.14. 证明 d ω 12 ω 1 ∧ ω 2 \dfrac {\mathrm d\omega_{12}}{\omega_1\wedge \omega_2} ω 1 ∧ ω 2 d ω 1 2 与正交标架 e 1 , e 2 \pmb e_1,\pmb e_2 e e 1 , e e 2 的选取无关。
直接计算
d ω 12 = ω 13 ∧ ω 32 = ( h 11 ω 1 + h 12 ω 2 ) ∧ ( h 22 ω 2 + h 21 ω 1 ) = ( h 11 h 22 − h 12 h 21 ) ω 1 ∧ ω 2 \mathrm d\omega_{12}=\omega_{13}\wedge\omega_{32}=(h_{11}\omega_1+h_{12}\omega_2)\wedge (h_{22}\omega_2+h_{21}\omega_1)=(h_{11}h_{22}-h_{12}h_{21})\omega_1\wedge \omega_2 d ω 1 2 = ω 1 3 ∧ ω 3 2 = ( h 1 1 ω 1 + h 1 2 ω 2 ) ∧ ( h 2 2 ω 2 + h 2 1 ω 1 ) = ( h 1 1 h 2 2 − h 1 2 h 2 1 ) ω 1 ∧ ω 2
而 h 11 h 22 − h 12 h 21 = K h_{11}h_{22}-h_{12}h_{21}=K h 1 1 h 2 2 − h 1 2 h 2 1 = K ,由 Gauss 绝妙定理,K K K 只与第一基本形式有关,从而与正交标架选取无关。
Problem.15. 球面 r ( u , v ) = ( a cos u cos u , a cos u sin v , a sin u ) \pmb r(u,v)=(a\cos u\cos u,a\cos u\sin v,a\sin u) r r ( u , v ) = ( a cos u cos u , a cos u sin v , a sin u )
求球面的一组正交活动标架; 求相应的诸微分形式 { ω 1 , ω 2 , ω 12 , ω 13 , ω 23 } \{\omega_1,\omega_2,\omega_{12},\omega_{13},\omega_{23}\} { ω 1 , ω 2 , ω 1 2 , ω 1 3 , ω 2 3 } ; 求球面的第二基本形式 I I II I I 。 (1) 以下就是一组正交活动标架:
e 1 = ( − sin u cos v , − sin u sin v , cos u ) , e 2 = ( − cos u sin v , cos u cos v , 0 ) \pmb e_1=(-\sin u\cos v,-\sin u\sin v,\cos u),\quad \pmb e_2=(-\cos u\sin v,\cos u\cos v,0) e e 1 = ( − sin u cos v , − sin u sin v , cos u ) , e e 2 = ( − cos u sin v , cos u cos v , 0 )
法向量为
e 3 = e 1 ∧ e 2 = − ( cos u cos v , cos u sin v , sin u ) \pmb e_3=\pmb e_1\wedge \pmb e_2=-(\cos u\cos v,\cos u\sin v,\sin u) e e 3 = e e 1 ∧ e e 2 = − ( cos u cos v , cos u sin v , sin u )
(2) 注意到 u , v u,v u , v 是一组正交参数,所以
ω 1 = a d u , ω 2 = a cos u d v \omega_1=a\mathrm du,\quad \omega_2=a\cos u\mathrm dv ω 1 = a d u , ω 2 = a cos u d v
ω 12 = − sin u d v , ω 13 = d u , ω 23 = cos u d v \omega_{12}=-\sin u\mathrm dv,\quad \omega_{13}=\mathrm du,\quad \omega_{23}=\cos u\mathrm dv ω 1 2 = − sin u d v , ω 1 3 = d u , ω 2 3 = cos u d v
(3) 直接计算
I I = ω 1 ω 13 + ω 2 ω 23 = a d u d u + a cos 2 u d v d v II=\omega_1\omega_{13}+\omega_2\omega_{23}=a\mathrm du\mathrm du +a\cos^2 u\mathrm dv\mathrm dv I I = ω 1 ω 1 3 + ω 2 ω 2 3 = a d u d u + a cos 2 u d v d v
Problem.16. 利用正交标架法证明习题三的 27。
参见习题三 Problem 27 的解答。
Problem.17. 利用正交标架法证明习题三的 32。
参见习题三 Problem 32 的解答。
Problem.18. 设曲面 S S S 的参数表示为 r = r ( u , v ) \pmb r=\pmb r(u,v) r r = r r ( u , v ) ,e 1 = r u , e 2 = r v \pmb e_1=\pmb r_u,\pmb e_2=\pmb r_v e e 1 = r r u , e e 2 = r r v 是 S S S 的正交标架,求 S S S 的 Gauss 曲率。
由 Gauss 方程
− K ω 1 ∧ ω 2 = d ω 12 = ⟨ d e 1 , e 2 ⟩ = ⟨ r u u , r v ⟩ d u = − ⟨ r u , r u v ⟩ d u = 0 -K\omega_1\wedge \omega_2=\mathrm d\omega_{12}=\langle \mathrm d\pmb e_1,\pmb e_2\rangle=\langle \pmb r_{uu},\pmb r_v\rangle \mathrm du=-\langle \pmb r_{u},\pmb r_{uv}\rangle \mathrm du=0 − K ω 1 ∧ ω 2 = d ω 1 2 = ⟨ d e e 1 , e e 2 ⟩ = ⟨ r r u u , r r v ⟩ d u = − ⟨ r r u , r r u v ⟩ d u = 0
Problem.19. 设 ( u , v ) (u,v) ( u , v ) 是曲面 S S S 的正交参数,e 1 = r u E , e 2 = r v G \pmb e_{1}=\dfrac {\pmb r_u}{\sqrt E},\ \pmb e_2=\dfrac {\pmb r_v}{\sqrt G} e e 1 = E r r u , e e 2 = G r r v ,证明:以下方程等价:
{ d ω 13 = ω 12 ∧ ω 23 d ω 23 = ω 21 ∧ ω 13 , ⟺ { ( L E ) v − ( M E ) u − N ( E ) v G + M ( G ) u E G = 0 ( N G ) u − ( M G ) v − L ( G ) u E + M ( E ) v E G = 0 \begin{cases}\mathrm d\omega_{13}=\omega_{12}\wedge \omega_{23}\\ \\ \mathrm d\omega_{23}=\omega_{21}\wedge \omega_{13}\end{cases},\quad {\iff}\begin{cases}\left(\dfrac {L}{\sqrt E}\right)_v -\left(\dfrac M{\sqrt E}\right)_u -N\dfrac {(\sqrt E)_v}{G} +M\dfrac {(\sqrt G)_u}{\sqrt {EG}}=0\\ \\ \left(\dfrac {N}{\sqrt G}\right)_u -\left(\dfrac M{\sqrt G}\right)_v -L\dfrac {(\sqrt G)_u}{E} +M\dfrac {(\sqrt E)_v}{\sqrt {EG}}=0\end{cases} ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ d ω 1 3 = ω 1 2 ∧ ω 2 3 d ω 2 3 = ω 2 1 ∧ ω 1 3 , ⟺ ⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ ( E L ) v − ( E M ) u − N G ( E ) v + M E G ( G ) u = 0 ( G N ) u − ( G M ) v − L E ( G ) u + M E G ( E ) v = 0
在正交参数网中,直接计算微分形式的表达式即可。
Problem.20. 设 { e 1 , e 2 } \{\pmb e_1,\pmb e_2\} { e e 1 , e e 2 } 是曲面的正交标架,e 1 , e 2 \pmb e_1,\pmb e_2 e e 1 , e e 2 是曲面的主方向,k 1 , k 2 k_1,k_2 k 1 , k 2 是相应的主曲率。证明:这时曲面的 Codazzi 方程等价于
d k 1 ∧ ω 1 = ( k 2 − k 1 ) ω 12 ∧ ω 2 , d k 2 ∧ ω 2 = ( k 1 − k 2 ) ω 21 ∧ ω 1 \mathrm dk_1\wedge \omega_1 =(k_2 -k_1)\omega_{12}\wedge \omega_2,\quad \mathrm dk_2\wedge \omega_2 =(k_1 -k_2)\omega_{21}\wedge \omega_1 d k 1 ∧ ω 1 = ( k 2 − k 1 ) ω 1 2 ∧ ω 2 , d k 2 ∧ ω 2 = ( k 1 − k 2 ) ω 2 1 ∧ ω 1
直接处理 Codazzi 方程的其中一条
d k 1 ∧ ω 1 + k 1 d ω 1 = d ( k 1 ω 1 ) = d ω 13 = ω 12 ∧ ω 23 = k 2 ω 12 ∧ ω 2 \mathrm dk_1\wedge \omega_1+k_1\mathrm d\omega_1=\mathrm d(k_1\omega_1)=\mathrm d\omega_{13}=\omega_{12}\wedge \omega_{23}=k_2\omega_{12}\wedge \omega_2 d k 1 ∧ ω 1 + k 1 d ω 1 = d ( k 1 ω 1 ) = d ω 1 3 = ω 1 2 ∧ ω 2 3 = k 2 ω 1 2 ∧ ω 2
# 习题五# 1-10Problem.1. 已知曲面的第一基本形式,求 Gauss 曲率:
I = d u d u + u 2 d v d v I=\mathrm du\mathrm du+u^2\mathrm dv\mathrm dv I = d u d u + u 2 d v d v ;I = d u d u + sin 2 u d v d v I=\mathrm du\mathrm du+\sin^2u\mathrm dv\mathrm dv I = d u d u + sin 2 u d v d v ;I = d u d u + d v d v ( c + u 2 + v 2 ) 2 I=\dfrac {\mathrm du\mathrm du+\mathrm dv\mathrm dv}{(c+u^2+v^2)^2} I = ( c + u 2 + v 2 ) 2 d u d u + d v d v ;I = d u d u + 2 cos θ d u d v + d v d v I=\mathrm du\mathrm du+2\cos\theta\mathrm du\mathrm dv+\mathrm dv\mathrm dv I = d u d u + 2 cos θ d u d v + d v d v ,其中 θ \theta θ 是常数。在正交参数网下,Gauss 曲率可以由此特殊情形下的 Gauss 方程计算:
K = − 1 E G [ ( ( E ) v G ) v + ( ( G ) u E ) u ] K=-\dfrac 1{\sqrt {EG}}\left[\left(\dfrac {(\sqrt E)_v}{\sqrt G}\right)_v +\left(\dfrac {(\sqrt G)_u}{\sqrt E}\right)_u\right] K = − E G 1 [ ( G ( E ) v ) v + ( E ( G ) u ) u ]
所以直接计算前三项。注:第一基本形式是正定的,所以基本上不需要担心绝对值导致的尖点问题。
(1) K = 0 K=0 K = 0 ;
(2) K = 1 K=1 K = 1 ;
(3) 考虑换元 λ = c + u 2 + v 2 \lambda=c+u^2+v^2 λ = c + u 2 + v 2 ,则 K = 4 c K=4c K = 4 c ;
(4) 题设并不是正交参数网,但是由于等距变换保持 Gauss 曲率不变,所以考虑对原先的第一基本形式作对角化(特别地,它是实对称矩阵)
I = [ d u d v ] [ 1 cos θ cos θ 1 ] [ d u d v ] I=\begin{bmatrix}\mathrm du & \mathrm dv\end{bmatrix}\begin{bmatrix}1 & \cos\theta\\ \cos\theta & 1\end{bmatrix}\begin{bmatrix}\mathrm du\\ \mathrm dv\end{bmatrix} I = [ d u d v ] [ 1 cos θ cos θ 1 ] [ d u d v ]
因为第一基本形式要求是正定的,所以要求可逆,计算特征值为 1 ± cos θ 1\pm \cos\theta 1 ± cos θ 。因为相似矩阵是实对称矩阵,从而是正交矩阵,必定存在以此为 Jacobi 矩阵的参数变换,从而
I = ( 1 + cos θ ) d u ~ d u ~ + ( 1 − cos θ ) d v ~ d v ~ I=(1+\cos\theta)\mathrm d\tilde {u}\mathrm d\tilde {u} +(1-\cos\theta)\mathrm d\tilde {v}\mathrm d\tilde {v} I = ( 1 + cos θ ) d u ~ d u ~ + ( 1 − cos θ ) d v ~ d v ~
直接计算,K = 0 K=0 K = 0 。注:根据曲面分类,第一基本形式系数为常数的曲面是平面或圆柱面。
Problem.2. 设两个曲面 S S S 和 S ~ \widetilde S S 的第一基本形式满足 I = λ I ~ I=\lambda \tilde I I = λ I ~ ,其中 λ > 0 \lambda>0 λ > 0 是常数,证明:
K = λ − 1 K ~ K=\lambda ^{-1}\widetilde K K = λ − 1 K
对于一般情形,考虑 Gauss 方程:
K = − R 1212 g 11 g 22 − g 12 2 K=-\dfrac {R_{1212}}{g_{11}g_{22}-g_{12}^2} K = − g 1 1 g 2 2 − g 1 2 2 R 1 2 1 2
其中 Riemann 记号展开为
R δ α β γ = g δ ξ ( ∂ Γ α β ξ ∂ u γ − ∂ Γ α γ ξ ∂ u β + Γ α β η Γ γ η ξ − Γ α γ η Γ β η ξ ) R_{\delta\alpha\beta\gamma}=g_{\delta\xi}\left(\dfrac {\partial \Gamma^\xi_{\alpha\beta}}{\partial u^\gamma}-\dfrac {\partial \Gamma^\xi_{\alpha\gamma}}{\partial u^\beta}+\Gamma^\eta_{\alpha\beta}\Gamma^\xi_{\gamma\eta}-\Gamma^\eta_{\alpha\gamma}\Gamma^\xi_{\beta\eta}\right) R δ α β γ = g δ ξ ( ∂ u γ ∂ Γ α β ξ − ∂ u β ∂ Γ α γ ξ + Γ α β η Γ γ η ξ − Γ α γ η Γ β η ξ )
只需要证明 Γ α β ξ \Gamma^\xi_{\alpha\beta} Γ α β ξ 和 g δ ξ g_{\delta \xi} g δ ξ 的变化关系即可。因为
g α β = λ g ~ α β , g α β = λ − 1 g ~ α β g_{\alpha\beta}=\lambda \tilde {g}_{\alpha\beta},\quad g^{\alpha\beta}=\lambda^{-1}\tilde {g}^{\alpha\beta} g α β = λ g ~ α β , g α β = λ − 1 g ~ α β
所以代入后发现,由于 λ \lambda λ 是常数,Christoffel 符号不变,即
Γ α β γ = 1 2 g γ δ ( ∂ g δ α ∂ u β + ∂ g δ β ∂ u α − ∂ g α β ∂ u δ ) = Γ ~ α β γ \Gamma^\gamma_{\alpha\beta}=\dfrac 12g^{\gamma\delta}\left(\dfrac {\partial g_{\delta\alpha}}{\partial u^\beta}+\dfrac {\partial g_{\delta\beta}}{\partial u^\alpha}-\dfrac {\partial g_{\alpha\beta}}{\partial u^\delta}\right)=\widetilde \Gamma^\gamma_{\alpha\beta} Γ α β γ = 2 1 g γ δ ( ∂ u β ∂ g δ α + ∂ u α ∂ g δ β − ∂ u δ ∂ g α β ) = Γ α β γ
所以 Riemann 记号满足
R δ α β γ = λ R ~ δ α β γ R_{\delta\alpha\beta\gamma}=\lambda \widetilde R_{\delta\alpha\beta\gamma} R δ α β γ = λ R δ α β γ
因此 Gauss 曲率满足
K = − λ R ~ 1212 λ 2 ( g ~ 11 g ~ 22 − g ~ 12 2 ) = λ − 1 K ~ K=-\dfrac {\lambda \widetilde R_{1212}}{\lambda^2(\tilde {g}_{11}\tilde {g}_{22}-\tilde {g}_{12}^2)}=\lambda^{-1}\widetilde K K = − λ 2 ( g ~ 1 1 g ~ 2 2 − g ~ 1 2 2 ) λ R 1 2 1 2 = λ − 1 K
第一基本形式系数矩阵相似不一定推出等距变换,因为相似矩阵不一定是某个参数变换的 Jacobi 矩阵。Gauss 曲率是内蕴几何学中重要的等距不变量,由于其涉及到曲面结构方程,所以不妨从 Gauss 方程发掘性质。
Problem.3. 设曲面 S , S ~ S,\widetilde S S , S 分别为
r ( u , v ) = ( a u , b v , a u 2 + b v 2 2 ) ; r ~ ( u ~ , v ~ ) = ( a ~ u ~ , b ~ v ~ , a ~ u ~ 2 + b ~ v ~ 2 2 ) \pmb r(u,v)=\left(au,bv,\dfrac {au^2+bv^2}2\right);\quad \tilde{\pmb r}(\widetilde u,\widetilde v)=\left(\widetilde a\widetilde u,\widetilde b\widetilde v,\dfrac {\widetilde a\widetilde u^2+\widetilde b\widetilde v^2}2\right) r r ( u , v ) = ( a u , b v , 2 a u 2 + b v 2 ) ; r r ~ ( u , v ) = ( a u , b v , 2 a u 2 + b v 2 )
证明:当 a b = a ~ b ~ ab=\widetilde a\widetilde b a b = a b 时,在对应 ( u , v ) = ( u ~ , v ~ ) (u,v)=(\widetilde u,\widetilde v) ( u , v ) = ( u , v ) 下,S S S 与 S ~ \widetilde S S 的 Gauss 曲率相等; ( a , b ) (a,b) ( a , b ) 与 ( a ~ , b ~ ) (\widetilde a,\widetilde b) ( a , b ) 满足什么关系时,S S S 与 S ~ \widetilde S S 有等距变换?(1) 给定了参数,可以直接计算第一、二基本形式,从而计算 Gauss 曲率。对于 r \pmb r r r ,有
{ E = a 2 ( 1 + u 2 ) , F = a b u v , G = b 2 ( 1 + v 2 ) L = a 1 + u 2 + v 2 , M = 0 , N = b 1 + u 2 + v 2 \begin{cases}E=a^2(1+u^2),\quad F=abuv,\quad G=b^2(1+v^2)\\ \\ L=\dfrac a{\sqrt {1+u^2+v^2}},\quad M=0,\quad N=\dfrac b{\sqrt {1+u^2+v^2}}\end{cases} ⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ E = a 2 ( 1 + u 2 ) , F = a b u v , G = b 2 ( 1 + v 2 ) L = 1 + u 2 + v 2 a , M = 0 , N = 1 + u 2 + v 2 b
所以 Gauss 曲率满足关系式
K = L N − M 2 E G − F 2 = 1 ( 1 + u 2 + v 2 ) 2 a b = 1 ( 1 + u ~ 2 + v ~ 2 ) 2 a ~ b ~ = K ~ K=\dfrac {LN-M^2}{EG-F^2}=\dfrac {1}{(1+u^2+v^2)^2ab}=\dfrac 1{(1+\widetilde u^2+\widetilde v^2)^2\widetilde a\widetilde b}=\widetilde K K = E G − F 2 L N − M 2 = ( 1 + u 2 + v 2 ) 2 a b 1 = ( 1 + u 2 + v 2 ) 2 a b 1 = K
(2) 题目应该指的是 S , S ~ S,\widetilde S S , S 在 σ : ( u , v ) ↦ ( u ~ , v ~ ) \sigma:(u,v)\mapsto(\widetilde u,\widetilde v) σ : ( u , v ) ↦ ( u , v ) 的情形下是等距变换。根据等距变换的等价性质,这要求
[ a 2 ( 1 + u 2 ) a b u v a b u v b 2 ( 1 + v 2 ) ] = ∂ ( u ~ , v ~ ) ∂ ( u , v ) [ a ~ 2 ( 1 + u ~ 2 ) a ~ b ~ u ~ v ~ a ~ b ~ u ~ v ~ b ~ 2 ( 1 + v ~ 2 ) ] ∂ ( u ~ , v ~ ) ∂ ( u , v ) T \begin{bmatrix}a^2(1+u^2) & abuv\\[6pt] abuv & b^2(1+v^2)\end{bmatrix}=\dfrac {\partial (\tilde u,\tilde v)}{\partial(u,v)}\begin{bmatrix}\widetilde a^2(1+\widetilde u^2) & \widetilde a\widetilde b\widetilde u\widetilde v\\[6pt] \widetilde a\widetilde b\widetilde u\widetilde v & \widetilde b^2(1+\widetilde v^2)\end{bmatrix}\dfrac {\partial (\tilde u,\tilde v)}{\partial(u,v)}^T [ a 2 ( 1 + u 2 ) a b u v a b u v b 2 ( 1 + v 2 ) ] = ∂ ( u , v ) ∂ ( u ~ , v ~ ) [ a 2 ( 1 + u 2 ) a b u v a b u v b 2 ( 1 + v 2 ) ] ∂ ( u , v ) ∂ ( u ~ , v ~ ) T
此外,等距变换时 S , S ~ S,\widetilde S S , S 的 Gauss 曲率相等,所以由 (1) 可知
1 + u 2 + v 2 = a b a ~ b ~ ⋅ ( 1 + u ~ 2 + v ~ 2 ) : = c ( 1 + u ~ 2 + v ~ 2 ) 1+u^2+v^2=\sqrt {\dfrac {ab}{\widetilde a\widetilde b}}\cdot (1+\widetilde u^2+\widetilde v^2):=c(1+\widetilde u^2+\widetilde v^2) 1 + u 2 + v 2 = a b a b ⋅ ( 1 + u 2 + v 2 ) : = c ( 1 + u 2 + v 2 )
对 u , v u,v u , v 求偏导,得到
[ u v ] = c [ u ~ u v ~ u u ~ v v ~ v ] [ u ~ v ~ ] = c ⋅ ∂ ( u ~ , v ~ ) ∂ ( u , v ) [ u ~ v ~ ] \begin{bmatrix}u\\[6pt] v\end{bmatrix}=c\begin{bmatrix}\widetilde u_u &\widetilde v_u\\[6pt] \widetilde u_v &\widetilde v_v\end{bmatrix}\begin{bmatrix}\widetilde u\\[6pt] \widetilde v\end{bmatrix}=c\cdot \dfrac{\partial (\tilde u,\tilde v)}{\partial(u,v)}\begin{bmatrix}\widetilde u\\[6pt] \widetilde v\end{bmatrix} [ u v ] = c [ u u u v v u v v ] [ u v ] = c ⋅ ∂ ( u , v ) ∂ ( u ~ , v ~ ) [ u v ]
由一一对应,c ≠ 0 c\neq 0 c = 0 ,又因为 Jacobi 矩阵非退化,所以 u = v = 0 u=v=0 u = v = 0 时,u ~ = v ~ = 0 \widetilde u=\widetilde v=0 u = v = 0 。所以推出 c = 1 c=1 c = 1 ,说明 u 2 + v 2 = u ~ 2 + v ~ 2 u^2+v^2=\widetilde u^2+\widetilde v^2 u 2 + v 2 = u 2 + v 2 。继续求偏导,得到
[ 1 0 0 1 ] = ∂ ( u ~ , v ~ ) ∂ ( u , v ) T ⋅ ∂ ( u ~ , v ~ ) ∂ ( u , v ) + ∂ 2 ( u ~ , v ~ ) ∂ ( u , v ) 2 [ u ~ v ~ ] \begin{bmatrix}1 & 0\\[6pt] 0 & 1\end{bmatrix}= \dfrac{\partial (\tilde u,\tilde v)}{\partial(u,v)}^T\cdot \dfrac{\partial (\tilde u,\tilde v)}{\partial(u,v)} + \dfrac{\partial^2 (\tilde u,\tilde v)}{\partial(u,v)^2}\begin{bmatrix}\widetilde u\\[6pt] \widetilde v\end{bmatrix} [ 1 0 0 1 ] = ∂ ( u , v ) ∂ ( u ~ , v ~ ) T ⋅ ∂ ( u , v ) ∂ ( u ~ , v ~ ) + ∂ ( u , v ) 2 ∂ 2 ( u ~ , v ~ ) [ u v ]
\ \ \ \ \
Problem.4. 证明协变微分的性质:设 v , w \pmb v,\pmb w v v , w w 是曲面的切向量场,f f f 是曲面上的函数,则
D ( v + w ) = D v + D w \mathrm D(\pmb v+\pmb w)=\mathrm D\pmb v+\mathrm D\pmb w D ( v v + w w ) = D v v + D w w ;D ( f v ) = d f v + f D v \mathrm D(f\pmb v)=\mathrm df \pmb v +f\mathrm D\pmb v D ( f v v ) = d f v v + f D v v ;D ⟨ v , w ⟩ = ⟨ D v , w ⟩ + ⟨ v , D w ⟩ \mathrm D\langle \pmb v,\pmb w\rangle =\langle \mathrm D\pmb v,\pmb w\rangle +\langle \pmb v,\mathrm D\pmb w\rangle D ⟨ v v , w w ⟩ = ⟨ D v v , w w ⟩ + ⟨ v v , D w w ⟩ 。(1) 直接计算
Problem.7. 设曲面的第一基本形式如下,求结构方程与 Gauss 曲率:
d s 2 = ( U + V ) ( d u d u + d v d v ) \mathrm ds^2=(U+V)(\mathrm du\mathrm du+\mathrm dv\mathrm dv) d s 2 = ( U + V ) ( d u d u + d v d v ) ,其中 U = U ( u ) , V = V ( v ) U=U(u),V=V(v) U = U ( u ) , V = V ( v ) ;d s 2 = 1 4 ( u − v 2 ) ( d u d u − 4 v d u d v + 4 u d v d v ) \mathrm ds^2=\dfrac 1{4(u-v^2)}(\mathrm du\mathrm du-4v\mathrm du\mathrm dv+4u\mathrm dv\mathrm dv) d s 2 = 4 ( u − v 2 ) 1 ( d u d u − 4 v d u d v + 4 u d v d v ) ,其中 u > v 2 u>v^2 u > v 2 。(1) 在自然标架诱导的正交标架下,计算微分形式
ω 1 = U + V d u , ω 2 = U + V d v \omega_1=\sqrt {U+V}\mathrm du,\quad \omega_2=\sqrt {U+V}\mathrm dv ω 1 = U + V d u , ω 2 = U + V d v
待定系数 ω 12 = A ω 1 + B ω 2 \omega_{12}=A\omega_1+B\omega_2 ω 1 2 = A ω 1 + B ω 2 ,由结构方程
d ω 1 = − V ′ 2 ( U + V ) 3 / 2 ω 1 ∧ ω 2 , d ω 2 = U ′ 2 ( U + V ) 3 / 2 ω 1 ∧ ω 2 \mathrm d\omega_1=-\dfrac {V'}{2(U+V)^{3/2}}\omega_1\wedge \omega_2,\quad \mathrm d\omega_2=\dfrac {U'}{2(U+V)^{3/2}}\omega_1\wedge \omega_2 d ω 1 = − 2 ( U + V ) 3 / 2 V ′ ω 1 ∧ ω 2 , d ω 2 = 2 ( U + V ) 3 / 2 U ′ ω 1 ∧ ω 2
解得
ω 12 = − V ′ 2 ( U + V ) 3 / 2 ω 1 + U ′ 2 ( U + V ) 3 / 2 ω 2 \omega_{12}= -\dfrac {V'}{2(U+V)^{3/2}}\omega_1 +\dfrac {U'}{2(U+V)^{3/2}}\omega_2 ω 1 2 = − 2 ( U + V ) 3 / 2 V ′ ω 1 + 2 ( U + V ) 3 / 2 U ′ ω 2
进而由 d ω 12 = − K ω 1 ∧ ω 2 \mathrm d\omega_{12}=-K\omega_1\wedge \omega_2 d ω 1 2 = − K ω 1 ∧ ω 2 解得 Gauss 曲率为
d ω 12 = V ′ ′ ( U + V ) − 3 V ′ 2 / 2 2 ( U + V ) 3 ω 1 ∧ ω 2 + U ′ ′ ( U + V ) − 3 U ′ 2 / 2 2 ( U + V ) 3 ω 1 ∧ ω 2 \mathrm d\omega_{12}=\dfrac {V''(U+V)-3V'^2/2}{2(U+V)^3}\omega_1\wedge \omega_2 +\dfrac {U''(U+V)-3U'^2/2}{2(U+V)^3}\omega_1\wedge \omega_2 d ω 1 2 = 2 ( U + V ) 3 V ′ ′ ( U + V ) − 3 V ′ 2 / 2 ω 1 ∧ ω 2 + 2 ( U + V ) 3 U ′ ′ ( U + V ) − 3 U ′ 2 / 2 ω 1 ∧ ω 2
K = − 2 ( U + V ) ( U ′ ′ + V ′ ′ ) − 3 ( U ′ 2 + V ′ 2 ) 4 ( U + V ) 3 K=-\dfrac {2(U+V)(U''+V'')-3(U'^2+V'^2)}{4(U+V)^3} K = − 4 ( U + V ) 3 2 ( U + V ) ( U ′ ′ + V ′ ′ ) − 3 ( U ′ 2 + V ′ 2 )
(2) 由于 I = ω 1 ω 1 + ω 2 ω 2 I=\omega_1\omega_1+\omega_2\omega_2 I = ω 1 ω 1 + ω 2 ω 2 ,所以先对角化
d s 2 = 1 4 ( u − v 2 ) [ ( d u − 2 v d v ) 2 + 4 ( u − v 2 ) ( d v ) 2 ] \mathrm ds^2=\dfrac 1{4(u-v^2)}[(\mathrm du-2v\mathrm dv)^2 +4(u-v^2)(\mathrm dv)^2] d s 2 = 4 ( u − v 2 ) 1 [ ( d u − 2 v d v ) 2 + 4 ( u − v 2 ) ( d v ) 2 ]
则令
ω 1 = d u − 2 v d v 2 u − v 2 , ω 2 = d v \omega_1=\dfrac {\mathrm du-2v\mathrm dv}{2\sqrt {u-v^2}},\quad \omega_2=\mathrm dv ω 1 = 2 u − v 2 d u − 2 v d v , ω 2 = d v
待定系数 ω 12 = A ω 1 + B ω 2 \omega_{12}=A\omega_1+B\omega_2 ω 1 2 = A ω 1 + B ω 2 ,由结构方程
d ω 1 = − d ( u − v 2 ) ∧ ( d u − 2 v d v ) 4 ( u − v 2 ) 3 / 2 = − ω 1 ∧ ω 1 u − v 2 = 0 = d ω 2 \mathrm d\omega_1=-\dfrac {\mathrm d(u-v^2)\wedge (\mathrm du-2v\mathrm dv)}{4(u-v^2)^{3/2}}=-\dfrac {\omega_1\wedge \omega_1}{\sqrt {u-v^2}}=0=\mathrm d\omega_2 d ω 1 = − 4 ( u − v 2 ) 3 / 2 d ( u − v 2 ) ∧ ( d u − 2 v d v ) = − u − v 2 ω 1 ∧ ω 1 = 0 = d ω 2
所以联络形式 ω 12 = 0 \omega_{12}=0 ω 1 2 = 0 ,进而 Gauss 曲率 K = 0 K=0 K = 0 。
Problem.8. 求沿着球面的赤道,切向量的平行移动。
球面的参数表示为
r ( θ , φ ) = ( r cos θ cos φ , r cos θ sin φ , r sin θ ) \pmb r(\theta,\varphi)=(r\cos\theta\cos\varphi,r\cos\theta\sin\varphi,r\sin\theta) r r ( θ , φ ) = ( r cos θ cos φ , r cos θ sin φ , r sin θ )
其中 θ ∈ [ − π / 2 , π / 2 ] \theta\in [-\pi/2,\pi/2] θ ∈ [ − π / 2 , π / 2 ] 是纬度,φ ∈ [ 0 , 2 π ) \varphi\in [0,2\pi) φ ∈ [ 0 , 2 π ) 是经度。计算第一基本形式以及微分形式
e 1 = r θ ∣ r θ ∣ , e 2 = r φ ∣ r φ ∣ ; I = r 2 d θ d θ + r 2 cos 2 θ d φ d φ \pmb e_1=\dfrac {\pmb r_\theta}{|\pmb r_\theta|},\quad \pmb e_2=\dfrac {\pmb r_\varphi}{|\pmb r_\varphi|};\quad I=r^2\mathrm d\theta\mathrm d\theta +r^2\cos^2\theta \mathrm d\varphi\mathrm d\varphi e e 1 = ∣ r r θ ∣ r r θ , e e 2 = ∣ r r φ ∣ r r φ ; I = r 2 d θ d θ + r 2 cos 2 θ d φ d φ
所以 ω 1 = r d θ , ω 2 = r cos θ d φ \omega_1=r\mathrm d\theta,\ \omega_2=r\cos\theta \mathrm d\varphi ω 1 = r d θ , ω 2 = r cos θ d φ ,解得
ω 12 = − sin θ d φ \omega_{12}=-\sin\theta \mathrm d\varphi ω 1 2 = − sin θ d φ
赤道对应 θ = 0 \theta=0 θ = 0 ,对应联络形式 ω 12 = 0 \omega_{12}=0 ω 1 2 = 0 ,对应曲线弧长参数表示为
r ( s ) = ( r cos ( s / r ) , r sin ( s / r ) , 0 ) , s ∈ [ 0 , 2 π r ) \pmb r(s)=(r\cos(s/r),r\sin(s/r),0),\ s\in [0,2\pi r) r r ( s ) = ( r cos ( s / r ) , r sin ( s / r ) , 0 ) , s ∈ [ 0 , 2 π r )
设沿赤道的切向量场为 v ( s ) = A e 1 + B e 2 \pmb v(s)=A\pmb e_1+B\pmb e_2 v v ( s ) = A e e 1 + B e e 2 ,则由 Levi-Civita 平行移动条件:
D v d s = d A e 1 + d B e 2 d s + A ω 12 d s e 2 − B ω 12 d s e 1 = 0 \dfrac {\mathrm D\pmb v}{\mathrm ds}=\dfrac {\mathrm dA\pmb e_1+\mathrm dB\pmb e_2}{\mathrm ds} +A\dfrac {\omega_{12}}{\mathrm ds}\pmb e_2 -B\dfrac {\omega_{12}}{\mathrm ds}\pmb e_1=0 d s D v v = d s d A e e 1 + d B e e 2 + A d s ω 1 2 e e 2 − B d s ω 1 2 e e 1 = 0
比较系数,得到 A ˙ = B ˙ = 0 \dot A=\dot B=0 A ˙ = B ˙ = 0 ,所以切向量 v = A e 1 ( s ) + B e 2 ( s ) \pmb v=A\pmb e_1(s)+B\pmb e_2(s) v v = A e e 1 ( s ) + B e e 2 ( s ) 沿赤道平行移动时,关于正交标架场 e 1 , e 2 \pmb e_1,\pmb e_2 e e 1 , e e 2 的系数 A , B A,B A , B 不变。
# 附:整体微分几何# ProblemSet 1Problem.1. 对于弧长参数的平面简单闭曲线 r ( s ) , s ∈ [ 0 , l ] \pmb r(s),s\in [0,l] r r ( s ) , s ∈ [ 0 , l ] ,其角度参数为 θ ~ ( s ) \widetilde \theta(s) θ ( s ) ,证明:存在连续函数 θ : [ 0 , l ] → R \theta:[0,l]\to\mathbb R θ : [ 0 , l ] → R ,使得
θ ( s ) ≡ θ ~ ( s ) ( m o d 2 π ) , ∀ s ∈ [ 0 , l ] \theta(s)\equiv \widetilde \theta(s)\ (\mathrm{mod}\ 2\pi),\quad \forall s\in [0,l] θ ( s ) ≡ θ ( s ) ( m o d 2 π ) , ∀ s ∈ [ 0 , l ]
且满足上式的连续函数 θ \theta θ 在 m o d 2 π \mathrm{mod}\ 2\pi m o d 2 π 意义下唯一。
角度参数 θ ~ ( s ) ∈ arg ( t , x ) \widetilde \theta(s)\in \arg(\pmb t,x) θ ( s ) ∈ arg ( t t , x ) 是多值函数。在 Gauss 映射下,n \pmb n n n 与 x x x 轴的夹角为 θ ~ ( s ) + π / 2 \widetilde \theta(s)+\pi/2 θ ( s ) + π / 2 。考虑 S 1 \mathbb S^1 S 1 上的开覆盖
U = { e i θ : θ ∈ ( − π / 2 , 3 π / 2 ) } , V = { e i θ : θ ∈ ( π / 2 , 5 π / 2 ) } U=\{e^{i\theta}:\theta\in (-\pi/2,3\pi/2)\},\quad V=\{e^{i\theta}:\theta\in (\pi/2,5\pi/2)\} U = { e i θ : θ ∈ ( − π / 2 , 3 π / 2 ) } , V = { e i θ : θ ∈ ( π / 2 , 5 π / 2 ) }
所以对任意 s ∈ [ 0 , l ] s\in [0,l] s ∈ [ 0 , l ] ,都存在 δ s > 0 \delta_s>0 δ s > 0 ,使得 B ( n ( s ) , δ s ) ∩ S 1 B(\pmb n(s),\delta_s)\cap\mathbb S^1 B ( n n ( s ) , δ s ) ∩ S 1 包含于 U U U 或 V V V 。由于 n \pmb n n n 是连续映射,所以存在
B ( s , ε s ) ⊂ n − 1 ( B ( n ( s ) , δ s ) ) B(s,\varepsilon_s)\subset \pmb n^{-1}(B(\pmb n(s),\delta_s)) B ( s , ε s ) ⊂ n n − 1 ( B ( n n ( s ) , δ s ) )
因为 [ 0 , l ] [0,l] [ 0 , l ] 是紧集,所以存在有限子覆盖 { B ( s i , ε s i ) } i = 1 N \{B(s_i,\varepsilon_{s_i})\}_{i=1}^N { B ( s i , ε s i ) } i = 1 N ,满足
s 1 < s 2 < ⋯ < s N ; B ( s i , ε s i ) ∩ B ( s i + 1 , ε s i + 1 ) ≠ ∅ s_1<s_2<\cdots <s_N;\quad B(s_i,\varepsilon_{s_i})\cap B(s_{i+1},\varepsilon_{s_{i+1}})\neq \varnothing s 1 < s 2 < ⋯ < s N ; B ( s i , ε s i ) ∩ B ( s i + 1 , ε s i + 1 ) = ∅
另一方面,注意到 U , V U,V U , V 分别同胚于 ( − π / 2 , 3 π / 2 ) , ( π / 2 , 5 π / 2 ) (-\pi/2,3\pi/2),( \pi/2,5\pi/2) ( − π / 2 , 3 π / 2 ) , ( π / 2 , 5 π / 2 ) 。
首先,定义 θ ( s 1 ) = θ ~ ( s 1 ) \theta(s_1)=\widetilde \theta(s_1) θ ( s 1 ) = θ ( s 1 ) ,因为 B ( s 1 , ε s 1 ) B(s_1,\varepsilon_{s_1}) B ( s 1 , ε s 1 ) 上对应的 n \pmb n n n 都落在 U U U 或 V V V 内,所以可以通过 U , V U,V U , V 对应的同胚,定义 θ ( s ) \theta(s) θ ( s ) 在 B ( s 1 , ε s 1 ) B(s_1,\varepsilon_{s_1}) B ( s 1 , ε s 1 ) 上的取值,使得
θ ( s ) ≡ θ ~ ( s ) ( m o d 2 π ) , ∀ s ∈ B ( s 1 , ε s 1 ) ; θ ( s ) ∈ C ( B ( s 1 , ε s 1 ) ) \theta(s)\equiv \widetilde \theta(s)\ (\mathrm{mod}\ 2\pi),\ \forall s\in B(s_1,\varepsilon_{s_1});\quad \theta(s)\in C(B(s_1,\varepsilon_{s_1})) θ ( s ) ≡ θ ( s ) ( m o d 2 π ) , ∀ s ∈ B ( s 1 , ε s 1 ) ; θ ( s ) ∈ C ( B ( s 1 , ε s 1 ) )
因为 B ( s 1 , ε s 1 ) ∩ B ( s 2 , ε s 2 ) ≠ ∅ B(s_1,\varepsilon_{s_1})\cap B(s_2,\varepsilon_{s_2})\neq \varnothing B ( s 1 , ε s 1 ) ∩ B ( s 2 , ε s 2 ) = ∅ ,所以 θ ( s ) \theta(s) θ ( s ) 在交集上已经有定义了,可以继续延拓到 B ( s 2 , ε s 2 ) B(s_2,\varepsilon_{s_2}) B ( s 2 , ε s 2 ) 上。依此类推,最终可以将 θ ( s ) \theta(s) θ ( s ) 定义在整个 [ 0 , l ] [0,l] [ 0 , l ] 上,至此完成了提升。
若存在另一连续函数 θ ^ ( s ) \hat \theta(s) θ ^ ( s ) 也满足题设条件,则由定义知道
θ ^ ( s ) − θ ( s ) ≡ 0 ( m o d 2 π ) , ∀ s ∈ [ 0 , l ] \hat \theta(s)-\theta(s)\equiv 0\ (\mathrm{mod}\ 2\pi),\quad \forall s\in [0,l] θ ^ ( s ) − θ ( s ) ≡ 0 ( m o d 2 π ) , ∀ s ∈ [ 0 , l ]
由于 θ ^ ( s ) − θ ( s ) \hat \theta(s)-\theta(s) θ ^ ( s ) − θ ( s ) 是连续函数,而 2 π Z 2\pi\mathbb Z 2 π Z 是离散集,所以 θ ^ ( s ) − θ ( s ) \hat \theta(s)-\theta(s) θ ^ ( s ) − θ ( s ) 在 [ 0 , l ] [0,l] [ 0 , l ] 上恒为某个常数 2 k π 2k\pi 2 k π ,这说明 θ ( s ) \theta(s) θ ( s ) 在 m o d 2 π \mathrm{mod}\ 2\pi m o d 2 π 意义下唯一。
Problem.2. Wirtinger 不等式:如果 f : R → R f:\mathbb R\to\mathbb R f : R → R 是周期为 2 π 2\pi 2 π 的 C 1 C^1 C 1 函数,且满足 ∫ 0 2 π f ( θ ) d θ = 0 \int_0^{2\pi}f(\theta)\mathrm d\theta=0 ∫ 0 2 π f ( θ ) d θ = 0 。证明:
∫ 0 2 π f 2 ( θ ) d θ ≤ ∫ 0 2 π f ′ 2 ( θ ) d θ \int_0^{2\pi}f^2(\theta)\mathrm d\theta \leq \int_0^{2\pi}f'^2(\theta)\mathrm d\theta ∫ 0 2 π f 2 ( θ ) d θ ≤ ∫ 0 2 π f ′ 2 ( θ ) d θ
在 L 2 ( R ) L^2(\mathbb R) L 2 ( R ) 内积空间中,内积定义为
⟨ f , g ⟩ = 1 π ∫ 0 2 π f ( θ ) g ( θ ) d θ \langle f,g\rangle =\dfrac 1\pi\int_0^{2\pi}f(\theta)g(\theta)\mathrm d\theta ⟨ f , g ⟩ = π 1 ∫ 0 2 π f ( θ ) g ( θ ) d θ
由 Fourier 级数理论,有如下标准正交基:
{ 1 2 , cos θ , sin θ , cos 2 θ , sin 2 θ , … } \left\{\dfrac 1{\sqrt 2},\ \cos \theta,\ \sin \theta,\ \cos 2\theta,\ \sin 2\theta,\ \ldots\right\} { 2 1 , cos θ , sin θ , cos 2 θ , sin 2 θ , … }
由于 ∫ 0 2 π f ( θ ) d θ = 0 \int ^{2\pi}_0 f(\theta)\mathrm d\theta=0 ∫ 0 2 π f ( θ ) d θ = 0 ,所以
f ( θ ) = ∑ n = 1 ∞ a n cos n θ + b n sin n θ ; a n = ⟨ f , cos n θ ⟩ , b n = ⟨ f , sin n θ ⟩ f(\theta)=\displaystyle \sum_{n=1}^\infty a_n\cos n\theta +b_n\sin n\theta;\quad a_n=\langle f,\cos n\theta\rangle,\ b_n=\langle f,\sin n\theta\rangle f ( θ ) = n = 1 ∑ ∞ a n cos n θ + b n sin n θ ; a n = ⟨ f , cos n θ ⟩ , b n = ⟨ f , sin n θ ⟩
对于其导数有
f ′ ( θ ) = a 0 ′ + ∑ n = 1 ∞ a n ′ cos n θ + b n ′ sin n θ f'(\theta)=\displaystyle a'_0+\sum_{n=1}^\infty a'_n\cos n\theta +b'_n\sin n\theta f ′ ( θ ) = a 0 ′ + n = 1 ∑ ∞ a n ′ cos n θ + b n ′ sin n θ
其中
{ a 0 ′ = ⟨ f ′ , 1 / 2 ⟩ = 0 a n ′ = ⟨ f ′ , cos n θ ⟩ = n b n b n ′ = ⟨ f ′ , sin n θ ⟩ = − n a n \begin{cases}a'_0=\langle f',1/\sqrt 2\rangle =0\\[6pt] a'_n=\langle f',\cos n\theta\rangle =n b_n\\[6pt] b'_n=\langle f',\sin n\theta\rangle =-n a_n\end{cases} ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎧ a 0 ′ = ⟨ f ′ , 1 / 2 ⟩ = 0 a n ′ = ⟨ f ′ , cos n θ ⟩ = n b n b n ′ = ⟨ f ′ , sin n θ ⟩ = − n a n
由 Bessel 定理知道
⟨ f , f ⟩ = ∑ n = 1 ∞ ( a n 2 + b n 2 ) ≤ ∑ n = 1 ∞ n 2 ( a n 2 + b n 2 ) = ⟨ f ′ , f ′ ⟩ \langle f,f\rangle =\sum_{n=1}^\infty (a_n^2+b_n^2)\leq \sum_{n=1}^\infty n^2(a_n^2+b_n^2)=\langle f',f'\rangle ⟨ f , f ⟩ = n = 1 ∑ ∞ ( a n 2 + b n 2 ) ≤ n = 1 ∑ ∞ n 2 ( a n 2 + b n 2 ) = ⟨ f ′ , f ′ ⟩
所以 Wirtinger 不等式得证,且当且仅当 f ( θ ) = a 1 cos θ + b 1 sin θ f(\theta)=a_1\cos \theta +b_1\sin \theta f ( θ ) = a 1 cos θ + b 1 sin θ 时取等号。
Problem.3. 设 C C C 是平面上一条凸的简单闭曲线,满足 0 < κ ≤ R − 1 0<\kappa\leq R^{-1} 0 < κ ≤ R − 1 ,其中 R R R 是正常数。证明:曲线 C C C 的长度 L ≥ 2 π R L\geq 2\pi R L ≥ 2 π R 。
平面闭曲线的旋转指数为 ± 1 \pm 1 ± 1 ,而 κ > 0 \kappa>0 κ > 0 ,则
1 = 1 2 π ∫ 0 L κ ( s ) d s ≤ L 2 π ⋅ 1 R 1=\dfrac 1{2\pi}\int_0^L \kappa(s)\mathrm ds\leq \dfrac L{2\pi} \cdot \dfrac 1R 1 = 2 π 1 ∫ 0 L κ ( s ) d s ≤ 2 π L ⋅ R 1
Problem.4. 求椭圆 r ( t ) = ( a cos t , b sin t ) , t ∈ [ 0 , 2 π ] \pmb r(t)=(a\cos t,b\sin t),t\in [0,2\pi] r r ( t ) = ( a cos t , b sin t ) , t ∈ [ 0 , 2 π ] 的顶点,其中 a > b > 0 a>b>0 a > b > 0 。
计算椭圆的基本量
{ r t = ( − a sin t , b cos t ) κ ( t ) = x ′ y ′ ′ − y ′ x ′ ′ ( x ′ 2 + y ′ 2 ) 3 / 2 = a b ( a 2 sin 2 t + b 2 cos 2 t ) 3 / 2 \begin{cases}\pmb r_t=(-a\sin t,b\cos t)\\[6pt] \kappa(t)=\dfrac {x'y''-y'x''}{(x'^2+y'^2)^{3/2}}=\dfrac {ab}{(a^2\sin^2 t +b^2\cos^2 t)^{3/2}}\end{cases} ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ r r t = ( − a sin t , b cos t ) κ ( t ) = ( x ′ 2 + y ′ 2 ) 3 / 2 x ′ y ′ ′ − y ′ x ′ ′ = ( a 2 sin 2 t + b 2 cos 2 t ) 3 / 2 a b
所以顶点满足
d κ d t d t d s = − 3 a b ( a 2 − b 2 ) sin t cos t ( a 2 sin 2 t + b 2 cos 2 t ) 5 / 2 d t d s = 0 \dfrac {\mathrm d\kappa}{\mathrm dt}\dfrac {\mathrm dt}{\mathrm ds}=-\dfrac {3ab(a^2-b^2)\sin t\cos t}{(a^2\sin^2 t +b^2\cos^2 t)^{5/2}}\dfrac {\mathrm dt}{\mathrm ds}=0 d t d κ d s d t = − ( a 2 sin 2 t + b 2 cos 2 t ) 5 / 2 3 a b ( a 2 − b 2 ) sin t cos t d s d t = 0
所以顶点为 t = 0 , π / 2 , π , 3 π / 2 , 2 π t=0,\pi/2,\pi,3\pi/2,2\pi t = 0 , π / 2 , π , 3 π / 2 , 2 π 时,即四个点 ( ± a , 0 ) , ( 0 , ± b ) (\pm a,0),(0,\pm b) ( ± a , 0 ) , ( 0 , ± b ) 。
Problem.5. 设 r ( s ) \pmb r(s) r r ( s ) 是平面上弧长参数的凸闭曲线,证明:t ′ ′ \pmb t'' t t ′ ′ 至少在 4 个点处平行于 t \pmb t t t 。
由 Frenet 方程
t ′ = κ n , n ′ = − κ t ⟹ t ′ ′ = κ ′ n − κ 2 t \pmb t'=\kappa \pmb n,\quad \pmb n'=-\kappa \pmb t\implies \pmb t''=\kappa'\pmb n -\kappa^2\pmb t t t ′ = κ n n , n n ′ = − κ t t ⟹ t t ′ ′ = κ ′ n n − κ 2 t t
而 n , t \pmb n,\pmb t n n , t t 正交,所以 t ′ ′ \pmb t'' t t ′ ′ 平行于 t \pmb t t t 当且仅当
d κ d t = d κ d s ⋅ d s d t = 0 \dfrac {\mathrm d\kappa}{\mathrm dt}=\dfrac {\mathrm d\kappa}{\mathrm ds}\cdot \dfrac {\mathrm ds}{\mathrm dt}=0 d t d κ = d s d κ ⋅ d t d s = 0
由四顶点定理,可知上述方程至少有 4 个解。