Refers to Fourier Analysis by Stein

# Mean-square convergence

Theorem 3.2.1 Suppose fR(S1)f\in \mathcal R(S^1), then we have mean-square convergence of the Fourier series

12πππf(θ)SN(f)(θ)2dθ0,asN\dfrac 1{2\pi}\int ^\pi_{-\pi}|f(\theta)-S_N(f)(\theta)|^2\mathrm d\theta \to 0,\text{ as }N\to \infty

Before the proof of the Theorem 3.2.1, we consider the space R\mathcal R, then let

en(θ)=einθ,nNe_n(\theta)=e^{in\theta},\ \forall n\in\mathbb N

and obviously

(en,em)=δnm(e_n,e_m)=\delta_{nm}

(f,en)=12πππf(θ)einθdθ=f^(n)(f,e_n)=\dfrac1{2\pi}\int^\pi_{-\pi}f(\theta)e^{-in\theta}\mathrm d\theta=\hat f(n)

Now we have the best approximation of the Fourier series

Lemma 3.2.2 If fR(S1)f\in \mathcal R(S^1), then

fSN(f)fnNcnen||f-S_N(f)||\leq ||f-\sum_{|n|\leq N}c_ne_n||

for any complex numbers cnc_n. Moreover, equality holds precisely when cn=f^(n)c_n=\hat f(n) for all nN|n|\leq N

Proof of Lemma 3.2.2

Tips: Pythagorean theorem

Note that

(fSN(f),en)=0,nN(f-S_N(f),e_n)=0,\ \forall |n|\leq N

moreover

f2=fSN(f)2+nNf^(n)2||f||^2=||f-S_N(f)||^2+\sum_{|n|\leq N}|\hat f(n)|^2

Proof of Theorem 3.2.1

Tips: Interpolation

Apply Lemma 2.3.4 to approximate ff by a family of continuous functions, then apply Corollary 2.5.7.

Theorem 3.2.3 If fR(S1)f\in\mathcal R(S^1), then we have Parseval's identity

n=f^(n)2=f2=12πππf(θ)2dθ\sum^\infty_{n=-\infty}|\hat f(n)|^2=||f||^2=\dfrac{1}{2\pi}\int^\pi_{-\pi}|f(\theta)|^2\mathrm d\theta

that is to say

f2=14a02+12n=1an2+bn2||f||^2=\dfrac14a_0^2+\dfrac12\sum^\infty_{n=1}a^2_n+b_n^2

This identity provides an important connection between the norms in the two vector spaces l2(Z),Rl^2(\mathbb Z),\mathcal R.

Corollary 3.2.4 If

Theorem 3.2.5 If fR(S1)f\in\mathcal R(S^1), then we have Riemann-Lebesgue lemma

f^(n)0,asn\hat f(n)\to 0,\text{ as }|n|\to\infty

an equivalent reformulation of this theorem is that

ππf(θ)sin(Nθ)dθ0,asN\int ^\pi_{-\pi}f(\theta)\sin (N\theta)\mathrm d\theta\to 0,\text{ as } N\to\infty

ππf(θ)cos(Nθ)dθ0,asN\int^\pi_{-\pi}f(\theta)\cos (N\theta)\mathrm d\theta\to 0,\text{ as } N\to\infty

At last, we give a more general version of the Parseval identity

Lemma 3.2.6 Suppose F,GR(S1)F,G\in\mathcal R(S^1) with

Faneinθ,GbneinθF\sim \sum a_ne^{in\theta},\quad G\sim\sum b_ne^{in\theta}

then

12πππF(θ)G(θ)dθ=n=anbn\dfrac1{2\pi}\int^\pi_{-\pi} F(\theta)\overline{G(\theta)}\mathrm d\theta=\sum^\infty_{n=-\infty}a_n\overline{b_n}

Proof of Lemma 3.2.6

Tips: Polarisation

Note the connection between the inner product and the norm that

(F,G)=14[F+G2FG2+i(F+iG2FiG2)](F,G)=\dfrac 14\left[||F+G||^2-||F-G||^2+i(||F+iG||^2-||F-iG||^2)\right]

which holds in every Hermitian inner product space.

Incidentally, it's from the form

(F+G,F+G)=F2+G2+2Re(F,G)(F+G,F+G)=||F||^2+||G||^2+2\mathrm{Re}(F,G)

Theorem 3.2.7 Suppose fR(S1)f\in\mathcal R(S^1), with fAneinxf\sim \displaystyle \sum A_ne^{inx}, then for all (a,b)[π,π](a,b)\subset [-\pi,\pi], then

12πabf(x)dx=nZabAneinxdx\dfrac 1{2\pi}\int^b_af(x)\mathrm dx=\sum_{n\in\mathbb Z} \int^b_a A_ne^{inx}\mathrm dx

Proof of Theorem 3.2.7

Apply Lemma 3.2.6. Let

g(x)=χ(a,b)(x)={0,x[π,π](a,b)1,x(a,b)g(x)=\chi_{(a,b)}(x)=\left\{\begin{array}{ll}0&,x\in[-\pi,\pi]-(a,b)\\ 1&,x\in(a,b)\end{array}\right.

# Pointwise convergence