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27.1：证明 Hilbert伴随算子的性质：假设 𝑋,𝑌, 𝑍 是复 Hilbert空间，𝐴 ∈ LC(𝑋 ;𝑌 ), 𝐵 ∈ LC(𝑌 ;𝑍 )，则

• 𝐴∗ ∈ LC(𝑌 ;𝑋 ) 且 ∥𝐴∗∥ = ∥𝐴∥；

• (𝐵𝐴)∗ = 𝐴∗𝐵∗, (𝜆id)∗ = 𝜆id；

• ker(𝐴∗) = Ran(𝐴)⊥, Ran(𝐴∗) = ker(𝐴)⊥；

• Ran(𝐴)闭，当且仅当 Ran(𝐴∗) 闭；

• 𝐴∗∗ = 𝐴；

• 如果 𝐴是双射，那么 𝐴∗是双射，且 (𝐴∗)−1 = (𝐴−1)∗；

• 如果 𝐴是等距同构，则 𝐴∗是等距同构；

• 如果 𝐴是紧的，则 𝐴∗是紧的；

• 如果 𝐴是 Fredholm，则 𝐴∗是 Fredholm，从而 index(𝐴∗) + index(𝐴) = 0。

Proof. (1) (𝐴𝑥,𝑦 + 𝛼𝑦) = (𝑥,𝐴∗(𝑦 + 𝛼𝑦)) = (𝐴𝑥,𝑦) + 𝛼 (𝐴𝑥,𝑦) = (𝑥,𝐴∗𝑦) + (𝑥, 𝛼𝐴∗𝑦) = (𝑥,𝐴∗𝑦 + 𝛼𝐴∗𝑦)，由任意性说明 𝐴∗是

复线性算子；考虑 | (𝐴𝑥,𝑦) | = | (𝑥,𝐴∗𝑦) | ≤ ∥𝑥 ∥∥𝑦∥∥𝐴∗∥，得到 ∥𝐴∥ ≤ ∥𝐴∗∥，反向同理；

(2) (𝑥, (𝐵𝐴)∗𝑧) = (𝐵𝐴𝑥, 𝑧) = (𝐴𝑥, 𝐵∗𝑧) = (𝑥,𝐴∗𝐵∗𝑧)，所出现的都是复线性算子，所以运算合法；(𝑥, (𝜆id)∗𝑥) = (𝜆id𝑥, 𝑥) =
𝜆(𝑥, id𝑥) = (𝑥, 𝜆id𝑥)；

(3) (𝐴𝑥,𝑦) = (𝑥,𝐴∗𝑦)，固定 𝑦 变动 𝑥，从左向右推出 Ran(𝐴)⊥ ⊆ ker(𝐴∗)，从右向左推出反向；如果 𝑥 ∈ Ran(𝐴∗)，则存
在 {𝑦𝑛} ⊆ 𝑌 使得 𝐴∗𝑦𝑛 → 𝑥，那么由连续性，对于任意 𝑥 ∈ ker(𝐴)⊥ 有 (𝑥, 𝑥) = (𝑥,𝐴∗𝑦𝑛) + (𝑥, 𝑥 −𝐴∗𝑦𝑛)，推出 Ran(𝐴∗) ⊆
ker(𝐴)⊥；另一方面假设 Ran(𝐴∗) ⊊ ker(𝐴)⊥，则对于任意 𝑥0 ∈ ker(𝐴)⊥ \ Ran(𝐴∗)，由凸投影定理，存在 𝑥1 ∈ Ran(𝐴∗) 使
得 (𝑥0 − 𝑥1) ⊥ Ran(𝐴∗)，从而 (𝐴(𝑥0 − 𝑥1), 𝑦) = (𝑥0 − 𝑥1, 𝐴∗𝑦) = 0对任意 𝑦 ∈ 𝑌 成立，说明 𝑥0 − 𝑥1 ∈ ker𝐴 ∩ ker(𝐴)⊥ = {0}，
与 𝑥0的选取矛盾；

(4) Ran(𝐴∗
B) 是 𝑋 ∗ = Φ𝑋 (𝑋 ) 的闭子空间，当且仅当任意 Cauchy列 {𝐴∗

BΦ𝑌 (𝑦𝑛)}都是收敛列，由于 Φ𝑋 是等距同构，所以

任意 Cauchy列 {𝐴∗
H𝑦𝑛}都是收敛列，当且仅当 Ran(𝐴∗) 是 𝑋 的闭子空间。所以，根据 Banach空间闭像集定理得证；

(5) (𝐴𝑥,𝑦) = (𝑥,𝐴∗𝑦) = (𝐴∗𝑦, 𝑥) = (𝑦,𝐴∗∗𝑥) = (𝐴∗∗𝑥,𝑦)；

(6-8)都是从 Banach对偶算子迁移而来的性质，等距同构不影响性质：𝐴∗ = Φ−1
𝑋

◦𝐴∗
B ◦ Φ𝑌；

(9)回忆 ind(𝐴) = dim ker(𝐴) − dim(𝑌/Ran𝐴)，而等距同构依旧不改变两项的维数。 □
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27.2：设 𝐻 是非零复 Hilbert空间，𝐴 : 𝐻 → 𝐻 为正规算子，证明：

• 对任意 𝜆 ∈ 𝜎 (𝐴) 有 Re 𝜆 ≥ 0，这当且仅当对任意 𝑥 ∈ 𝐻 有 Re ⟨𝑥,𝐴𝑥⟩ ≥ 0；

• sup∥𝑥 ∥=1 Re⟨𝑥,𝐴𝑥⟩ = sup𝜆∈𝜎 (𝐴) Re 𝜆, inf ∥𝑥 ∥=1 Re ⟨𝑥,𝐴𝑥⟩ = inf𝜆∈𝜎 (𝐴) Re 𝜆；

• 𝜎 (𝐴) ∩ 𝑖R = ∅等价于 𝐴 +𝐴∗是双射；

• 𝜎 (𝐴 +𝐴∗) = {𝜆 + 𝜆 : 𝜆 ∈ 𝜎 (𝐴)}；

• 𝐴是正规算子的假设在上述结论中不能去掉。

Proof. (1)对任意 𝜆 ∈ 𝜎 (𝐴)有 Re 𝜆 ≥ 0，这等价于说对任意 Re 𝜆 < 0都有 𝜆𝐼 −𝐴为有界线性双射。因此对于充分性，如
果 Re 𝜆 < 0，则

Re(𝑥, (𝐴 − 𝜆𝐼 )𝑥) = Re(𝑥,𝐴𝑥) − Re(𝑥, 𝜆𝑥) = Re(𝑥,𝐴𝑥) − Re 𝜆 · Re(𝑥, 𝑥) ≥ −Re 𝜆 · Re(𝑥, 𝑥) ≥ 0

由 Cauchy-Schwarz不等式推出 ∥𝑥 ∥ · ∥(𝐴 − 𝜆𝐼 )𝑥 ∥ ≥ Re(𝑥, (𝐴 − 𝜆𝐼 )𝑥)。联立两个式子得到 ∥(𝐴 − 𝜆𝐼 )𝑥 ∥ ≥ −Re 𝜆∥𝑥 ∥。这指
出 𝐴 − 𝜆𝐼 是单射，同时也说明 Ran(𝐴 − 𝜆𝐼 )是闭的（因为 𝐻 是完备的），则 ker(𝐴∗ − 𝜆𝐼 ) = Ran(𝐴 − 𝜆𝐼 )⊥。将上面的推导
过程改成 𝜆和 𝐴∗，仍然有 Re𝜆 < 0，并且 Re(𝑥,𝐴𝑥) = Re(𝐴∗𝑥, 𝑥) = Re(𝑥,𝐴∗𝑥) ≥ 0，所以能推出 ker(𝐴∗ − 𝜆𝐼 ) = 0，这说明
Ran(𝐴 − 𝜆𝐼 ) = 0⊥ = 𝐻 是满射，从而 𝜆𝐼 −𝐴是有界线性双射。

反过来，对于必要性，考虑算子演算 𝑒−𝑡𝐴，其中 𝑡 ≥ 0。首先由谱映射定理 𝜎 (𝑒−𝑡𝐴) = 𝑒−𝑡𝜎 (𝐴)，所以 𝑒−𝑡𝐴 的谱的模长不

超过 1，然后由正规算子的谱半径公式推出 ∥𝑒−𝑡𝐴∥ ≤ 1。考虑映射 𝑡 ↦→ (𝑒−𝑡𝐴𝑥, 𝑒−𝑡𝐴𝑥)，展开求导

d∥𝑒−𝑡𝐴𝑥 ∥2
d𝑡 = lim

𝑡0→0

(𝑒−(𝑡+𝑡0 )𝐴𝑥, (𝑒−(𝑡+𝑡0 )𝐴 − 𝑒−𝑡𝐴)𝑥) + ((𝑒−(𝑡+𝑡0 )𝐴 − 𝑒−𝑡𝐴)𝑥, 𝑒−𝑡𝐴𝑥)
𝑡0

= −(𝑒−𝑡𝐴𝑥,𝐴𝑥) − (𝐴𝑥, 𝑒−𝑡𝐴𝑥)

取 𝑡 = 0时，右侧就是 −2Re(𝑥,𝐴𝑥)，左侧因为满足 ∥𝑒−𝑡𝐴𝑥 ∥ ≤ ∥𝑒−𝑡𝐴∥∥𝑥 ∥ ≤ ∥𝑥 ∥，所以可见 𝑡 = 0是极大值点，所以此时
取非正值，因此 Re(𝑥,𝐴𝑥) ≥ 0。

(2)设 inf𝜆∈𝜎 (𝐴) Re 𝜆 =𝑚, inf ∥𝑥 ∥=1 Re(𝑥,𝐴𝑥) = 𝑀。首先由谱映射定理，𝜎 (𝐴 +ℎ𝐼 ) = 𝜎 (𝐴) +ℎ只不过是对谱做了平移。因此
根据 (1)我们由 Re(𝜆−𝑚) ≥ 0推出 Re(𝑥, (𝐴−𝑚𝐼 )𝑥) ≥ 0，从而 Re(𝑥,𝐴𝑥) ≥ 𝑚，说明𝑀 ≥ 𝑚；反过来由 Re(𝑥, (𝐴−𝑀𝐼 )𝑥) ≥ 0
推出 Re(𝜆 −𝑀) ≥ 0，这说明𝑚 ≥ 𝑀，从而𝑀 =𝑚。另一个式子是同样的处理思路。

(3)充分性，如果 𝐴 +𝐴∗是双射，那么由开映射定理，推出存在 𝑐 > 0使得 ∥(𝐴 +𝐴∗)𝑥 ∥ ≥ 𝑐 ∥𝑥 ∥，进一步

2∥𝐴𝑥 ∥ = ∥𝐴𝑥 ∥ + ∥𝐴∗𝑥 ∥ ≥ ∥(𝐴 +𝐴∗)𝑥 ∥ ≥ 𝑐 ∥𝑥 ∥

这推出 𝐴 是单射且像集为闭，则同理对 𝐴∗ 处理，推出 Ran(𝐴)⊥ = ker𝐴∗ = {0}，所以 𝐴 是双射。特别地，将 𝐴 换为

𝜆𝑖𝐼 +𝐴，(𝜆𝑖𝐼 +𝐴) + (𝜆𝑖𝐼 +𝐴)∗ = 𝐴 +𝐴∗是双射，从而 𝜆𝑖𝐼 +𝐴也是双射，这对任意 𝜆 ∈ R成立。

必要性，因为 𝜎 (𝐴) ∩ 𝑖R = ∅，所以 𝜎 (𝐴)在复平面上被分为两个不交半平面𝑈−,𝑈+，从而定义投影算子，得到谱投影分

解空间 𝐻− ⊕ 𝐻+ = 𝐻，这是 𝐴的不变子空间，使得 {±Re𝜆 > 0} ⊂ 𝜎 (𝐴|𝐻±)。事实上，由 (2)知道，限制在 𝐻±上：

sup
𝜎 (𝐴∗ |𝐻± )

Re 𝜆 = sup
∥𝑥 ∥=1

Re(𝑥,𝐴∗ |𝐻±𝑥) = sup
∥𝑥 ∥=1

Re(𝑥,𝐴|𝐻±𝑥) = sup
𝜎 (𝐴 |𝐻± )

Re 𝜆

同理对 inf 也是，所以 𝐴∗的谱在 𝐻±上也是根据正负号被划分开。此时 (𝐴 +𝐴∗)𝐻± = 𝐴|𝐻± +𝐴∗ |𝐻±。因为谱是紧集，所以

存在 𝑐 > 0使得在 𝐻+中

∥𝑥 ∥∥(𝐴 +𝐴∗) |𝐻+𝑥 ∥ ≥ 2 inf
𝑥∈𝐻+

Re(𝑥,𝐴|𝐻+𝑥) = 2∥𝑥 ∥2 inf
𝜆∈𝜎 (𝐴 |𝐻+ )

Re 𝜆 = 2𝑐 ∥𝑥 ∥2 > 0

同之前题目中的分析，可以得到 (𝐴 +𝐴∗) |𝐻+ 是双射，所以直和拼接起来后 𝐴 +𝐴∗是 𝐻 的双射。
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(4) 首先对于自伴算子 𝜎 (𝐴 + 𝐴∗) ⊂ R，然后对算子 𝐴 − 𝜇𝐼 其中 𝜇 ∈ R 使用 (3) 中的结论，得到：2𝜇𝐼 − (𝐴 + 𝐴∗) =

(𝜇𝐼 − 𝐴) + (𝜇𝐼 − 𝐴)∗ 是双射，当且仅当 𝜎 (𝜇𝐼 − 𝐴) = 𝜇 − 𝜎 (𝐴) 满足 (𝜎 (𝐴) − 𝜇) ∩ 𝑖R = ∅，当且仅当 𝜇 + 𝛽𝑖 ∉ 𝜎 (𝐴) 对任意
𝛽 ∈ R。反过来叙述就是 (4)的结论。

(5)如果 𝐴不是正规算子，那么 (1)-(4)有反例。取 𝐴为 2阶的 Jordan块 𝐽 (0) =
[
0 1
0 0

]
，则 𝜎 (𝐴) = {0}，在 (1)中选取

𝑥 = (1,−1) 到处矛盾；在 (2)中同样到处矛盾（否则 Re(𝑥,𝐴𝑥) ≡ 0）；在 (3)中 𝐴 + 𝐴∗ =

[
0 1
1 0

]
是双射，矛盾；在 (4)中

𝜎 (𝐴 +𝐴∗) = {±1} ≠ {0}，矛盾。 □
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