Armstrong.Cp3.21. If A and B are compact, and if W is a neighbourhood of A×B in X×Y, find a neighbourhood U of A in X and a neighbourhood V of B in Y such that U×V⊆W.
固定 a∈A,考虑 {a}×B⊆W. 注意到 (a,b)⊆{a}×B 是 W 的内点,所以存在邻域 (a,b)∈Ua×Vb⊆W,其中 Ua,Vb 分别是 a,b 在 X,Y 中的邻域,且 Ua×Vb⊆W. 那么 {a}×B⊆⋃b∈BUa×Vb,由 B 是紧集,所以存在有限开覆盖使得 B⊆⋃i=1nVbi,所以 {a}×B⊆⋃i=1nUai×Vbi⊆W,进而记 ⋂i=1nUai=U~a,⋃i=1nVbi=V~a,则
{a}×B⊆U~a×V~a⊆i=1⋃nUai×Vbi⊆W
变动 a∈A,考虑遍历 A×B⊆⋃a∈AU~a×V~a⊆W,A,B 是紧集,所以 A×B 是紧集,推出有限覆盖
A×B⊆j=1⋃mU~aj×V~aj⊆W
则 U=⋃j=1mU~aj,V=⋂j=1mV~aj.
Armstrong.Cp3.25. Show that the diagonal map Δ:X→X×X defined by Δ(x)=(x,x) is indeed a map, and check that X is Hausdorff iff Δ(X) is closed in X×X.
先验证连续映射。对任意 X×X 中的开集 U,对任意 x∈Δ−1(U),存在基础开集 (x,x)∈X1×X2⊆U,所以 (x,x)∈(X1∩X2)×(X1∩X2)⊆U,这推出 x∈X1∩X2⊆Δ−1(U),从而说明连续映射.
Δ(X) 是闭集,当且仅当 S:=X×X∖Δ(X)={(x,y):x,y∈X,x=y} 是开集,当且仅当对任意 (x,y),x=y,都存在基础开集 (x,y)∈U×V⊆S,当且仅当对任意 x=y,都存在开集 x∈U,y∈V,使得 U∩V=∅,当且仅当 X 是 Hausdorff 空间.
Armstrong.Cp3.26. We know that the projections p1:X×Y→X,p2:X×Y→Y are open maps. Are they always closed?
不一定,考虑 S={(x,tanx):x∈(−2π,2π)}⊆R×R,由于 R×R∖S 是开集,所以 S 是闭集,但 πX(S)=(−2π,2π)⊆X 是开集.
Armstrong.Cp3.30. Let X be the set of all points in the plane which have at least one rational coordinate. Show that X, with the induced topology, is a connected space.
道路连通集是连通的。对于任意 (x1,y1),(x2,y2)∈X,不妨设 x1,x2∈Q,那么取道路(以线段长度为参数)为依次连接 (x1,y1),(x1,0),(x2,0),(x2,y2) 的折线段 γ,显然 γ⊆X,因此 X 是道路连通空间,从而是连通空间.
Armstrong.Cp3.32. If X has only a finite number of components, show that each component is both open and closed. Find a space none of whose components are open sets.
连通分支都是闭集且两两不交。不妨设 X 的连通分支全体为 {Ci}i=1n,所以 Ci=X∖⋃k=iCi 是开集。所以有限个连通分支的拓扑空间,其每个连通分支都是既开又闭的.
考虑 Q 在 R 诱导下的子空间拓扑,Q 的连通分支都是单点集,又因为 Q 的稠密性,显然 Q 中的单点集都不是开集.
Armstrong.Cp3.33. (Intermediate value theorem). If f:[a,b]→E1 is a map such that f(a)<0 and f(b)>0, use the connectedness of [a,b] to establish the existence of a point c for which f(c)=0.
连通集的连续像是连通集,区间 [a,b] 是 E1 的连通集。因为 f 是连续函数,所以 f([a,b]) 是 E1 上的连通集,因为它非空,所以只能是区间。注意到 f([a,b])⊃[f(a),f(b)],所以 0∈f([a,b]),即存在 c∈[a,b] 使得 f(c)=0.
Armstrong.Cp3.34. A space X is locally connected if for each x∈X, and each neighbourhood U of x, there is a connected neighbourhood V of x which is contained in U. Show that any euclidean space, and therefore any space which is locally euclidean(like a surface), is locally connected. If X={0}∪{1/n:n=1,2,⋯} with the subspace topology from the real line, show that X is not locally connected.
在 Euclidean 空间 Rn 中,对于任意点 x∈Rn 及其邻域 x∈U⊆Rn,都存在基础开集 x∈I:=I1×⋯×In⊆U,其中 Ii 是 R 上的开集,事实上这些开集可以取为区间。因此不妨设 Ii 为开区间,则 V:=I 是连通空间.
对于局部 Euclidean 空间 X,每个点 x∈X 都存在邻域 M 同胚于 Rn 中的开集。同胚保持连通性和包含关系(Armstrong.Cp3.35 将给出证明),所以在 Rn 上成立的结论在 X 仍然成立.
对于空间 X={0}∪{1/n},它不是局部连通的。因为考虑 0 的邻域 U=(−1,1)∩X,假设存在连通邻域 x∈V⊆U,那么 V={0}∪(U∩V∖{0}) 可以表示为两个不交开集的并,其中后者是开集 {1/n} 可数并(所以是开集),这与 V 连通矛盾.
Armstrong.Cp3.35. Show that local connectedness is preserved by a homeomorphism, but need not be preserved by a continuous function.
即如果 X 是局部连通空间,h:X→Y 是同胚,那么对于任意 y∈Y 及其邻域 y∈V⊆Y,我们有 h−1(V)⊆X 是 x 的邻域,则存在满足 x∈U⊆h−1(V) 的连通邻域 U,所以 y∈h(U)⊆V 且 h(U) 保持连通性。所以局部连通性在同胚下保持.
但局部连通性不一定在连续映射下保持。考虑 Y=N∪{0} 的离散拓扑空间,此时其所有子集都是开集,显然 Y 是局部连通空间。考虑连续映射
f:Y→X={1/n}n∈N∪{0},{n↦1/n0↦0
这里 X 配备 R 的子空间拓扑,由 Armstrong.Cp3.34 知道 X 不是局部连通的.
Armstrong.Cp3.37. Show that the continuous image of a path-connected space is path-connected.
设道路连通空间 U,任意连续映射 f:U→f(U). 对于任意 x,y∈f(U),存在 x0,y0∈U 使得 f(x0)=x,f(y0)=y,那么存在连续映射 γ:[0,1]→U 使得 γ(0)=x0,γ(1)=y0,所以连续映射
f∘γ:[0,1]→f(U)
满足 f∘γ(0)=x,f∘γ(1)=y,所以 f(U) 是道路连通空间.
Armstrong.Cp3.39. Prove that the product of two path-connected spaces is path-connected.
设道路连通空间 X,Y,则对于任意 (x1,y1),(x2,y2)∈X×Y,存在连续映射
γ1:[0,1]→X, s.t. γ1(0)=x1,γ1(1)=x2γ2:[0,1]→Y, s.t. γ2(0)=y1,γ2(1)=y2
考虑映射 γ 和基础开集 U×V⊆X×Y
γ:=γ1×γ2(t):[0,1]→X×Y,t↦(γ1(t),γ2(t))
则 γ−1(U×V)=γ1−1(U)∩γ2−1(V) 是 [0,1] 上的开集,所以 γ 是连续映射。另一方面 γ(0)=(x1,y1),γ(1)=(x2,y2),所以 X×Y 是道路连通空间.
Armstrong.Cp3.40. If A and B are path-connected subsets of a space, and if A∩B is nonempty, prove that A∪B is path-connected.
取 x∈A∩B,则对于任意 y,z∈A∪B,存在连续映射
γ1:[0,1]→A∪B, s.t. γ1(0)=y,γ1(1)=xγ2:[0,1]→A∪B, s.t. γ2(0)=x,γ2(1)=z
所以考虑映射 γ
γ={γ1(2t),γ2(2t−1),t∈[0,1/2]t∈[1/2,1]:[0,1]→A∪B
由 γ 在 [0,1/2],[1/2,1] 上的限制是连续映射,所以 γ 是连续映射,且满足 γ(0)=y,γ(1)=z,因此 A∪B 是道路连通的.
Armstrong.Cp4.2. Which space do we obtain if we take a Mobius strip and identify its boundary circle to a point?
这个空间同胚于实射影平面 RP2.
Armstrong.Cp4.3. Let f:X→Y be an identification map, let A be a subspace of X, and give f(A) the induced topology from Y. Show that the restriction f∣A:A→f(A) need not be an identification map.
\mathbf
\mathbf
\mathbf
Additional Exercise 1. In the class, we proved that a subset in Rn is compact if and only if it is closed and bounded.
- Give an example to show that a closed and bounded subset in a metric space is not necessarily compact in general.
- Let X be a metric space and let ε>0. A subset E⊆X is called an ε-grid if for