Armstrong.Cp3.21. If AA and BB are compact, and if WW is a neighbourhood of A×BA\times B in X×YX\times Y, find a neighbourhood UU of AA in XX and a neighbourhood VV of BB in YY such that U×VWU\times V\subseteq W.

固定 aAa\in A,考虑 {a}×BW\{a\}\times B\subseteq W. 注意到 (a,b){a}×B(a,b)\subseteq \{a\}\times BWW 的内点,所以存在邻域 (a,b)Ua×VbW(a,b)\in U_a\times V_b\subseteq W,其中 Ua,VbU_a,V_b 分别是 a,ba,bX,YX,Y 中的邻域,且 Ua×VbWU_a\times V_b\subseteq W. 那么 {a}×BbBUa×Vb\{a\}\times B\subseteq \bigcup_{b\in B}U_a\times V_b,由 BB 是紧集,所以存在有限开覆盖使得 Bi=1nVbiB\subseteq \bigcup^n_{i=1}V_{b_i},所以 {a}×Bi=1nUai×VbiW\{a\}\times B\subseteq \bigcup^n_{i=1}U_{a_i}\times V_{b_i}\subseteq W,进而记 i=1nUai=U~a,i=1nVbi=V~a\bigcap^n_{i=1}U_{a_i}=\tilde U_a,\bigcup^n_{i=1}V_{b_i}=\tilde V_a,则

{a}×BU~a×V~ai=1nUai×VbiW\{a\}\times B\subseteq\tilde U_a\times \tilde V_a\subseteq \bigcup^n_{i=1}U_{a_i}\times V_{b_i}\subseteq W

变动 aAa\in A,考虑遍历 A×BaAU~a×V~aWA\times B\subseteq \bigcup_{a\in A}\tilde U_a\times \tilde V_a\subseteq WA,BA,B 是紧集,所以 A×BA\times B 是紧集,推出有限覆盖

A×Bj=1mU~aj×V~ajWA\times B\subseteq \bigcup_{j=1}^m\tilde U_{a_j}\times \tilde V_{a_j}\subseteq W

U=j=1mU~aj,V=j=1mV~ajU=\bigcup^m_{j=1}\tilde U_{a_j},V=\bigcap ^m_{j=1}\tilde V_{a_j}.

Armstrong.Cp3.25. Show that the diagonal map Δ:XX×X\Delta :X\to X\times X defined by Δ(x)=(x,x)\Delta (x)=(x,x) is indeed a map, and check that XX is Hausdorff iff Δ(X)\Delta (X) is closed in X×XX\times X.

先验证连续映射。对任意 X×XX\times X 中的开集 UU,对任意 xΔ1(U)x\in \Delta^{-1} (U),存在基础开集 (x,x)X1×X2U(x,x)\in X_1\times X_2\subseteq U,所以 (x,x)(X1X2)×(X1X2)U(x,x)\in (X_1\cap X_2)\times(X_1\cap X_2)\subseteq U,这推出 xX1X2Δ1(U)x\in X_1\cap X_2\subseteq \Delta^{-1}(U),从而说明连续映射.

Δ(X)\Delta (X) 是闭集,当且仅当 S:=X×XΔ(X)={(x,y):x,yX,xy}S:=X\times X\setminus \Delta (X)=\{(x,y):x,y\in X,x\neq y\} 是开集,当且仅当对任意 (x,y),xy(x,y),x\neq y,都存在基础开集 (x,y)U×VS(x,y)\in U\times V\subseteq S,当且仅当对任意 xyx\neq y,都存在开集 xU,yVx\in U,y\in V,使得 UVU\cap V\neq \emptyset,当且仅当 XX 是 Hausdorff 空间.

Armstrong.Cp3.26. We know that the projections p1:X×YX,p2:X×YYp_1:X\times Y\to X,p_2:X\times Y\to Y are open maps. Are they always closed?

不一定,考虑 S={(x,tanx):x(π2,π2)}R×RS=\{(x,\tan x):x\in (-\frac \pi2,\frac \pi2)\}\subseteq \mathbb R\times \mathbb R,由于 R×RS\mathbb R\times \mathbb R\setminus S 是开集,所以 SS 是闭集,但 πX(S)=(π2,π2)X\pi_X(S)=(-\frac \pi2,\frac \pi2)\subseteq X 是开集.

Armstrong.Cp3.30. Let XX be the set of all points in the plane which have at least one rational coordinate. Show that XX, with the induced topology, is a connected space.

道路连通集是连通的。对于任意 (x1,y1),(x2,y2)X(x_1,y_1),(x_2,y_2)\in X,不妨设 x1,x2Qx_1,x_2\in\mathbb Q,那么取道路(以线段长度为参数)为依次连接 (x1,y1),(x1,0),(x2,0),(x2,y2)(x_1,y_1),(x_1,0),(x_2,0),(x_2,y_2) 的折线段 γ\gamma,显然 γX\gamma\subseteq X,因此 XX 是道路连通空间,从而是连通空间.

Armstrong.Cp3.32. If XX has only a finite number of components, show that each component is both open and closed. Find a space none of whose components are open sets.

连通分支都是闭集且两两不交。不妨设 XX 的连通分支全体为 {Ci}i=1n\{C_i\}_{i=1}^n,所以 Ci=XkiCiC_i=X\setminus \bigcup _{k\neq i}C_i 是开集。所以有限个连通分支的拓扑空间,其每个连通分支都是既开又闭的.

考虑 Q\mathbb QR\mathbb R 诱导下的子空间拓扑,Q\mathbb Q 的连通分支都是单点集,又因为 Q\mathbb Q 的稠密性,显然 Q\mathbb Q 中的单点集都不是开集.

Armstrong.Cp3.33. (Intermediate value theorem). If f:[a,b]E1f:[a,b]\to\mathbb E^1 is a map such that f(a)<0f(a)<0 and f(b)>0f(b)>0, use the connectedness of [a,b][a,b] to establish the existence of a point cc for which f(c)=0f(c)=0.

连通集的连续像是连通集,区间 [a,b][a,b]E1\mathbb E^1 的连通集。因为 ff 是连续函数,所以 f([a,b])f([a,b])E1\mathbb E^1 上的连通集,因为它非空,所以只能是区间。注意到 f([a,b])[f(a),f(b)]f([a,b])\supset [f(a),f(b)],所以 0f([a,b])0\in f([a,b]),即存在 c[a,b]c\in [a,b] 使得 f(c)=0f(c)=0.

Armstrong.Cp3.34. A space XX is locally connected if for each xXx\in X, and each neighbourhood UU of xx, there is a connected neighbourhood VV of xx which is contained in UU. Show that any euclidean space, and therefore any space which is locally euclidean(like a surface), is locally connected. If X={0}{1/n:n=1,2,}X=\{0\}\cup \{1/n:n=1,2,\cdots \} with the subspace topology from the real line, show that XX is not locally connected.

在 Euclidean 空间 Rn\mathbb R^n 中,对于任意点 xRnx\in \mathbb R^n 及其邻域 xURnx\in U\subseteq \mathbb R^n,都存在基础开集 xI:=I1××InUx\in I:=I_1\times \cdots \times I_n\subseteq U,其中 IiI_iR\mathbb R 上的开集,事实上这些开集可以取为区间。因此不妨设 IiI_i 为开区间,则 V:=IV:=I 是连通空间.

对于局部 Euclidean 空间 XX,每个点 xXx\in X 都存在邻域 MM 同胚于 Rn\mathbb R^n 中的开集。同胚保持连通性和包含关系(Armstrong.Cp3.35 将给出证明),所以在 Rn\mathbb R^n 上成立的结论在 XX 仍然成立.

对于空间 X={0}{1/n}X=\{0\}\cup\{1/n\},它不是局部连通的。因为考虑 00 的邻域 U=(1,1)XU=(-1,1)\cap X,假设存在连通邻域 xVUx\in V\subseteq U,那么 V={0}(UV{0})V=\{0\}\cup (U\cap V\setminus \{0\}) 可以表示为两个不交开集的并,其中后者是开集 {1/n}\{1/n\} 可数并(所以是开集),这与 VV 连通矛盾.

Armstrong.Cp3.35. Show that local connectedness is preserved by a homeomorphism, but need not be preserved by a continuous function.

即如果 XX 是局部连通空间,h:XYh:X\to Y 是同胚,那么对于任意 yYy\in Y 及其邻域 yVYy\in V\subseteq Y,我们有 h1(V)Xh^{-1}(V)\subseteq Xxx 的邻域,则存在满足 xUh1(V)x\in U\subseteq h^{-1}(V) 的连通邻域 UU,所以 yh(U)Vy\in h(U)\subseteq Vh(U)h(U) 保持连通性。所以局部连通性在同胚下保持.

但局部连通性不一定在连续映射下保持。考虑 Y=N{0}Y=\mathbb N\cup\{0\} 的离散拓扑空间,此时其所有子集都是开集,显然 YY 是局部连通空间。考虑连续映射

f:YX={1/n}nN{0},{n1/n00f:Y\to X=\{1/n\}_{n\in\mathbb N}\cup\{0\},\quad \left\{\begin{array}{l}n\mapsto 1/n\\ 0\mapsto 0\end{array}\right.

这里 XX 配备 R\mathbb R 的子空间拓扑,由 Armstrong.Cp3.34 知道 XX 不是局部连通的.

Armstrong.Cp3.37. Show that the continuous image of a path-connected space is path-connected.

设道路连通空间 UU,任意连续映射 f:Uf(U)f:U\to f(U). 对于任意 x,yf(U)x,y\in f(U),存在 x0,y0Ux_0,y_0\in U 使得 f(x0)=x,f(y0)=yf(x_0)=x,f(y_0)=y,那么存在连续映射 γ:[0,1]U\gamma:[0,1]\to U 使得 γ(0)=x0,γ(1)=y0\gamma(0)=x_0,\gamma(1)=y_0,所以连续映射

fγ:[0,1]f(U)f\circ \gamma:[0,1]\to f(U)

满足 fγ(0)=x,fγ(1)=yf\circ \gamma(0)=x,f\circ \gamma(1)=y,所以 f(U)f(U) 是道路连通空间.

Armstrong.Cp3.39. Prove that the product of two path-connected spaces is path-connected.

设道路连通空间 X,YX,Y,则对于任意 (x1,y1),(x2,y2)X×Y(x_1,y_1),(x_2,y_2)\in X\times Y,存在连续映射

γ1:[0,1]X,s.t.γ1(0)=x1,γ1(1)=x2γ2:[0,1]Y,s.t.γ2(0)=y1,γ2(1)=y2\begin{array}{l}\gamma_1:[0,1]\to X,\quad \text{ s.t. }\gamma_1(0)=x_1,\gamma_1(1)=x_2\\ \gamma_2:[0,1]\to Y,\quad \text{ s.t. }\gamma_2(0)=y_1,\gamma_2(1)=y_2\end{array}

考虑映射 γ\gamma 和基础开集 U×VX×YU\times V\subseteq X\times Y

γ:=γ1×γ2(t):[0,1]X×Y,t(γ1(t),γ2(t))\gamma:=\gamma_1\times \gamma_2(t):[0,1]\to X\times Y,\quad t\mapsto (\gamma_1(t),\gamma_2(t))

γ1(U×V)=γ11(U)γ21(V)\gamma^{-1}(U\times V)=\gamma_1^{-1}(U)\cap \gamma_2^{-1}(V)[0,1][0,1] 上的开集,所以 γ\gamma 是连续映射。另一方面 γ(0)=(x1,y1),γ(1)=(x2,y2)\gamma(0)=(x_1,y_1),\gamma(1)=(x_2,y_2),所以 X×YX\times Y 是道路连通空间.

Armstrong.Cp3.40. If AA and BB are path-connected subsets of a space, and if ABA\cap B is nonempty, prove that ABA\cup B is path-connected.

xABx\in A\cap B,则对于任意 y,zABy,z\in A\cup B,存在连续映射

γ1:[0,1]AB,s.t.γ1(0)=y,γ1(1)=xγ2:[0,1]AB,s.t.γ2(0)=x,γ2(1)=z\begin{array}{l}\gamma_1:[0,1]\to A\cup B,\quad \text{ s.t. }\gamma_1(0)=y,\gamma_1(1)=x\\ \gamma_2:[0,1]\to A\cup B,\quad \text{ s.t. }\gamma_2(0)=x,\gamma_2(1)=z\end{array}

所以考虑映射 γ\gamma

γ={γ1(2t),t[0,1/2]γ2(2t1),t[1/2,1]:[0,1]AB\gamma=\left\{\begin{array}{l}\gamma_1(2t),&t\in [0,1/2]\\ \gamma_2(2t-1),&t\in [1/2,1]\end{array}\right.:[0,1]\to A\cup B

γ\gamma[0,1/2],[1/2,1][0,1/2],[1/2,1] 上的限制是连续映射,所以 γ\gamma 是连续映射,且满足 γ(0)=y,γ(1)=z\gamma(0)=y,\gamma(1)=z,因此 ABA\cup B 是道路连通的.

Armstrong.Cp4.2. Which space do we obtain if we take a Mobius strip and identify its boundary circle to a point?

这个空间同胚于实射影平面 RP2\mathbb RP^2.

Armstrong.Cp4.3. Let f:XYf:X\to Y be an identification map, let AA be a subspace of XX, and give f(A)f(A) the induced topology from YY. Show that the restriction fA:Af(A)f|A:A\to f(A) need not be an identification map.

\mathbf

\mathbf

\mathbf

Additional Exercise 1. In the class, we proved that a subset in Rn\mathbb R^n is compact if and only if it is closed and bounded.

  1. Give an example to show that a closed and bounded subset in a metric space is not necessarily compact in general.
  2. Let XX be a metric space and let ε>0\varepsilon>0. A subset EXE\subseteq X is called an ε\varepsilon-grid if for